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Abstract
Critical traffic situations are a challenging part of the autonomous driving task, not only due to the
legal and ethical questions they implicate but also because they are scarce and often quite complex and
hence arduous to study. However, with the availability of autonomous driving datasets, providing an
increasing amount of sensor data, and recent advances in machine learning, allowing for easier
meta-data extraction, the analysis of such scenarios is now more promising than ever.

Thus in this work, we present the study of the specific scenario of a pedestrian crosswalk managed by a
traffic light system, where a critical situation appears when pedestrians are on the street during the
green phase of the vehicle traffic light. Deploying deep-learning models on DriveU and Cityscapes and
using the ground truth of the two datasets we estimate the corrected probability of an alike setup with
0.0825 % compared to setups with different light phases and no pedestrians on the street. We also
provide the true-positive real-world samples of the critical scenarios we found in the datasets and

discuss possible flaws of our analysis, with its approximated 17.87 % false-positive error rate.

Zusammenfassung
Kritische Situationen im Straflenverkehr sind eine der Herausforderung die nicht nur wegen der etischen
und rechtlichen Fragen die sie implizieren eine hohe Relevanz fiir das autonome Fahren besitzen,
sondern auch weil sie aufgrund ihrer Seltenheit und Komplexitat schwierig zu analysieren sind. Mit der
Verfiigbarkeit von groBeren Datenséitzen, die ein immer umfangreicheres Mafl an Sensordaten zur
Verfiigung stellen und Fortschritten im Bereich des maschinellen Lernens, sind die Voraussetzung fiir
das Studium solcher Situationen heute allerdings sehr vielversprechend.

Wir stellen deshalb in dieser Arbeit das Scenario eines ampelgeregelten Fulgéingeriiberwegs vor, wobei
eine kritische Situation entsteht, wenn sich ein Fu3gdnger wahrend der griinen Ampelphase auf der
Strale befindet. Wir verwenden Neuronale Netze auf DriveU und Cityscapes und die ” Ground Truth”
der beiden Datensédtze und schéatzen damit die Wahrscheinlichkeit des beschriebenen Szenarios auf
0.0825 % im Vergleich zu Szenarien mit andere Lichtphasen und keinen Fulgiangern auf dem Uberweg.
Wir geben auflerdem die gefunden wahr-positiven Beispiele eines kritischen Szenarios aus den
Datensétzen an und diskutieren mogliche Schwéchen unseres Ansatzes mit seiner 17.87 prozentigen

falsch-positiven Rate.
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INTRODUCTION

1.1 MOTIVATION

There is hardly anything more important for the development of the world we know today than the
automation in all major areas of our private, social, and economic life. In the form of algorithms,
automation operates aeroplanes, production lines, whole industrial facilities, and maybe even the domestic
coffee maker. While advancing over the years, we gave those algorithms more and more responsibilities
and used them in new and more complex environments. Nowadays their tasks are not limited to serve
milk warm or cold, or coffee with or without caffeine, but they already actualize futuristic visions from the
science fiction novels of the last century. One of those innovative ideas that are on the verge of realisation
is autonomous driving. This means cars and trucks that navigate traffic without any human intervention
or even supervision while succeeding their counterparts out of flesh and blood in efficiency and safety.
Accomplishing this task the algorithms first have to evaluate the vast amount of their sensor data and
extract the relevant information and second use the gained information to plan their next move. With
the state space as well as the action space being high dimensional and hard to grasp the research in this
field tends towards approaches with dynamic programming and machine learning to tackle complexity.
Algorithms of this kind heavily rely on extensive, diverse as well as representative datasets to prepare
them for every eventuality and especially critical situations. However, this latter situations are qua
definition very sparse and hence also rarities in the training data. The frequency of their appearance
hereby stands in flagrant contrast to their importance for supervised learning and autonomous driving in
general, since it is only juridically and ethically justifiable to let go a driverless vehicle if it is capable of
acting in akin situations. Thus one first step towards more applicable algorithms is the study of critical
scenarios their characterisation and statistical evaluation, answering the questions: How does a critical
scenario look like in reality and how often do they appear?

The prior considerations formed the motivation for this thesis, whereas this work wants to take a closer
look at a specific conflicting situation. Conflicting means, that the environment actively (by a signal,
i.e. a traffic light or sign) indicates a certain predefined configuration of itself, while the reality hardly
corresponds. This active indication stands out, especially in the context of autonomous driving, since a
traffic participant, for example, the autonomous driving system, has to realise the discrepancy between
reality and the indicated state, although he might be used to accurate signals. Now the approach of this
thesis is to search urban- and suburban-scene datasets for our chosen scenario, and finally give estimates
for the probabilities regarding the appearance of critical in contrast to uncritical setups. Therefore our
contribution is showing that such an analysis is possible and present an approach on how to conduct
it. In addition to that, the estimates, as well as the real-world examples we provide, could be used to
build synthetic instances for training models as well as studying the behaviour of autonomous driving

algorithms to the chosen conflict.




1.2 SPECIFICATION AND GGOALS

The scenario which was picked for this thesis is rather common in urban and suburban domains and
therefore allows a more accurate analysis due to a rather high representation in already existing traffic
datasets. Because of its rigid structure, the scenario is also well detectable.

The scenario is one of a pedestrian crossing that is managed by a traffic light system. The actors in this
scenario are the pedestrians and the vehicle, whereat all information about the environment is processed
from the vehicles point of view.

Now in a normal setup, the traffic light manages the pedestrian crossing and prevents the collision of
humans and vehicles by giving visual signals to both parties. A conflict, however, appears if pedestrians
behave transgressively and are on the street while the traffic light signals the vehicle a free crosswalk.
As we stated in the motivation, the goal of this thesis is to decompose this scenario and condense
the information from the datasets, finally giving estimates for the probability of the possible setups
determined by the state of the managing traffic lights and the presence of pedestrians on the crossing.
Here the challenge of this analysis lies in the parsing of the urban- and suburban-scene dataset, since the
meta-information that is relevant for the calculations has to be extracted from real-world and disparity
images and the ground truth of the data. For every sample, there has to be an examination if it contains

a pedestrian crossing, if people are walking over it and which state the managing traffic light is.

1.3 STRUCTURE OF THE THESIS

In the beginning, we discuss foundations of machine learning in general and then take a closer look at
supervised learning and in particular convolutional neural networks that play a big role when it comes
to analysing image and video data. This is followed by a discussion of related work concerning the topic
of traffic light classification and detection as a paragraph about the rise of urban- and suburban-scene
datasets, being essential to the proposed analysis. After a short introduction of the used datasets we

come to the four main parts of the thesis:

In the first part a convolutional neural network named DenseNet is trained and tested on traffic light
images from the DriveUC dataset to classify state and type of the respective samples. Furthermore, a
model for the identification of relevant traffic lights is developed and then trained and tested on DriveUC
as well. The latter model uses the state, type, measures and position of a traffic light to decide about
its relevance. Finally both models are merged to form a traffic light classification pipeline, which is then

evaluated on the DriveUC test set.

In the second part we shortly introduce the Panoptic-Deeplab model, being a panoptic-segmentation
pipeline pre-trained on the Cityscapes train dataset. We do add some postprocessing operations to this

pipeline and discuss its results on the Cityscapes extra, test and the DriveU dataset.

In the third part we build a set of rules formalising the identification of pedestrian crossings and detecting
the presence of pedestrians on this crossings in images of urban- and suburban-scenes. Those rules are

based on the depth information, a panoptic-segmentation of the image as well as type, state and relevance




labels for all traffic lights present. For both datasets, we do not have the full input and hence have to
extract this information from the data accessible to us. The Cityscapes train dataset provides a ground
truth of panoptic-segmentation and the disparity, however, is missing the labels of the traffic lights. Here
the model of part one comes into play providing us with type, state and relevance labels for all traffic
lights. For DriveU we can, on the other hand, rely on labelled traffic lights and depth information but
need to generate the panoptic-segmentation using the pre-trained Panoptic-Deeplab pipeline of part two.
Finally with Cityscapes train-extra and test we have neither the segmentation nor the type and state

information, hence we utilise both, our Panoptic-DeepLab as well as the traffic light classification model.

In the fourth part the condensed information is used to calculate the probabilistic estimates and we

analyse some outputs of the pipeline to get aware of the flaws of our approach.

In the end, we conclude our results and discuss the ability of the used approaches. We reason about the

accuracy of the calculated estimates and then finish with some thoughts about future work in this field.




FOUNDATIONS

2.1 MACHINE LEARNING

A definition of a machine learning problem is given by Thomas Mitchell in [1]:

?Fach machine learning problem can be precisely defined as the problem of improving some measure of

performance P when executing some task T, through some type of training experience E.”

The generality of this definition leaves a lot of room for details and characterisations of the abstract
entities P, T and E and we, therefore, limit ourselves to the common machine learning problems which
capture the most attention in current research and technologies.

In this problems P, T and E are all incorporated in an algorithm, in which P is given as some quantitative
performance measure tailored to the task at hand. The tasks controlled by P is then a rule specifying the
processing of a sample, which is normally represented by a vector € R™. Now a sample itself can be
divided up into its features being objects, measurements or events that are in some way interconnected
with the task, where the i*" feature corresponds to the i*" entry of . If we have a set of such samples
we usually talk about a dataset.

By the experience that the algorithms gain we can broadly divide them into two groups, with however a

quite fluent border between them:

The unsupervised learning. In the unsupervised learning setting, we are given a dataset and want to gain
experience in the form of knowledge about the underlying structure of the data by learning its probability

distribution or just properties of this distribution.

The supervised learning. In the supervised learning setting we are given a dataset as well but in this case,
a sample, besides the regular features, also contains several special features that we call labels or targets.
It is common to separate the regular features and the labels/targets and represent the first one with x
and the latter one with y. With this definition a sample now consists of the tuple (x,y), and from now
on we call & only the features and y the targets/labels. With these definitions, the goal of supervised

learning is to gain experience in the form of some mapping from « to y.

A more sophisticated overview of machine learning is given in [2, pp. 96-105], which also was used as a

basis for this part.

2.2 SUPERVISED LEARNING

In this thesis we are only! confronted with supervised learning problems and we, therefore, want to dis-

cuss some more details and establish basic terminology. It is quite convenient and more vivid to develop

1We neglect the application of DBSCAN in sec. 6.




this terminology while dealing with a concrete model. As we are utilising a feed-forward neural network
(FNN) later when classifying the relevance of traffic lights it seems reasonable to choose this model and

the classification task with i.i.d. data as representatives.

2.2.1 CLASSIFICATION

We start with the dataset give as:
D={(z;,y;) | i €[1,n]} CQx x Qy CR" xR™ (2.1)

together with the assumption that there exist dependencies between x and y that allow for the modelling

of a function:
[:Qx = Qy, = f(x)=19 (2.2)

Now a classification problem has the property that our space of labels is finite |[2y-| < oo, while the space
of features can be of arbitrary cardinality. One should also notice the hat in eq. 2.2 clarifying that this y
is the prediction of our model what y might be and not the actual y. This is a quite important fact as it
implicitly indicates our belief that our data is i.i.d. and drawn from a probability distribution, thus, in
general, we can not learn a deterministic function but only an estimator for y.

Since we believe both & and y are realisations of random variables, x and y can be interpreted as

probability spaces and there should exist a joint distribution:
piQx x Qy > [0,0c],  (@y) = p(X = 2,Y =) (2.3)

Where with the capital letters we indicate random variables and with the small letters realisations. Now

with the bias rule and the factorisation of joint probabilities [3, pp. 14, 22] we obtain:

_ p(X,Y)
p(Y[X) = o0 (2.4)

If we were in the possession of p(Y|X = @) the most intuitive estimator would be:
f(x) = arg max p(Y = z|X = x) (2.5)
z€Qy

which means we predict the z that maximises the posterior probability given our input @. This definition
of f is called the bayes classifier and is the optimal classifier when trying to minimise the risk on the

0-1-loss [3, pp. 39-42]:

R(f) = ExEy|x L(Y =y, f(X = x)) (2.6)
with
0 fX=z)=y
LY =y, f(X=2))= (2.7)
1 f(X==z)#y
being subject to
min R(f) (2.8)




Here E[-] denotes the expectation subject to its argument and the regarding probability variable written
in the lower index position.

Now the goal of classification (and also regression) is to either learn f directly or learn some approxima-
tion of p(Y'|X) and then set for example eq. 2.5 as an estimation function. The learning of the latter can
happen by directly modelling p(Y|X), which is called the discriminative approach, or by modelling the

joint distribution (eq. 2.4) or likelihood and marginals going by the name generative approach.

2.2.2 THE FEEDFORWARD NEURAL NETWORK

If we were in possession of p(Y'|X = &) our problem would be solved as we could just use eq. 2.5 for our
estimator f. As we do not know the underlying probability distribution, we have to think about a way
obtaining a good enough approximation of p(Y|X = &) and here our feed-forward neural network (FNN)

comes in to play. We choose the discriminative approach and just model the posterior with such a FNN:
Bo(Y|X = @) = N(x:0) (2.9)

where @ € © C R is the parameter vector of our FNN in the parameter space. One notices that the
network not only outputs the probability for a certain y but rather the whole distribution given X = .
With the set 2y being finite we can enumerate it and eq. 2.9 not only can be understood as probability
table but can be brought into a vector shape, with the i*" entry corresponding to the probability of
po(Y = yW|X = z). Here y"9) is the j** element of the enumeration of Qy-.

Our FNN is now on the one hand dependent on a vector of parameters representing the ”learnable
part” and on the other hand on its architecture, meaning the number and sizes of its layers. If we call
h;_1 € R™-1 the input to the i*" layer and h; € R™ the output with i € N then we can describe this

layer as a affine transformation followed by a non linear activation function g; : R™* — R™::

Here we made use of the fact that every linear transformation over finite R-vector-spaces can be repre-
sented by a matrix (W; € R™-1*") if the bases are specified. Furthermore we also incorporated the
shift of the origin into the matrix-vector product by implicitly adding another entry at constant one to
the vector h;_1. The so defined matrices are the constituents of our parameter vector 8. We depicted a
schematic drawing of a layer in fig. 1 for a better understanding.

With this definition a FNN is now nothing more than a concatenation of an input and an output layer and
some arbitrary number of layers of arbitrary shape in between, often referred to as hidden layers. Hence
to complete our construction of an FNN, we just have to choose activation functions and the number
and sizes of the hidden layers we want to use (the input and output dimensions are fixed by our feature
vector x and the cardinality of {2y respectively).

We do not want to talk too much about activation functions but just introduce the heavily used function

that has proven to be the most effective in most cases [4], the rectifying linear unit (ReLU):

ReLU : R — R, x+ ReLU(x) = max{z,0} (2.11)
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Fig. 1: A scheme of the i*" layer with a vector of dimension six as input and dimension four as output. The
features hZ_l of the input vector are multiplied with the weights of the layer w}, and then summed up together
with a respective explicit bias term bi. For the sixth input, the weights are written on the arrows to visualise the

principle. The affine transformation is then followed by the activation function of the layer g;, which finally

produces the output.

It uses no parameters and is applied pointwise to the vector entries. Its benefits are mainly its simple
derivative (setting it to zero at the origin) facilitating computation and especially back-propagation as
well as its linearity, precluding divergence of features in deeper layers.

This function, however, can not be used as an activation function in the last layer if we want to keep our
probability interpretation of the output. For the last layer, we, therefore, apply the so-called normalised
exponential function in short softmax that is defined as:

ez

E?:l e*s

Whereby the exponential function is applied pointwise to the vector in the argument and z; is the 4th

softmax : R™ — [0,1]", z — softmax(z) =

entry of z. The vector produced by the softmax has the property that all its entries are non-negative
and sum to one, implying we can interpret them as probabilities.

The specifics about layer dimensions and the depth of the network is now heavily dependent on the specific
task and therefore not of greater interest to us. We rather want to discuss another centrepiece of machine
learning and that is how to accumulate experience or in other words how to learn our approximation of

p(Y]X) by adjusting our parameters 6.
2.2.3 LEARNING AND THE LOSS

The loss and the learning go hand in hand as the loss is our measure P that quantifies the performance of
our model and therefore the learning process. Sampling y given X = x follows a categorical distribution

due to the finite space of classes [3, pp. 444-448]. This however means that the likelihood of our dataset




is:

D)= [[ »¥ =X =) (2.12)
(z,y)eD

with the factorisation only being possible since we assumed the data is i.i.d. Now the problem is still
that we are not in possession of the true distribution but only of the dataset, thus instead of using the
true distribution in the likelihood we use our model. We then argue that the data should maximise this

likelihood and choose 6 accordingly:

0 = arg max (mgepﬁg(Y =ylX =x) (2.13)
The 6 is called the maximum likelihood estimate (MLE) of our 8 and is in a more general manor discussed
in [2, pp. 129-130]. We can utilise the logarithm to transform eq. 2.13 into a sum, while both optimisations
are equivalent due to the concavity of the logarithm on (0, co). Furthermore we added a minus to make
it a minimisation problem:

6= in— po(Y = =x)). .
argmin— > log (pe(Y = y|X =x)) (2.14)
(z,y)eD

The argument of argmin is also called the negative log likelihood (NLL) [5, p. 218]. With our estimator
now defined, we are confronted with two problems. The first one is our finite and maybe unrepresentative
dataset and the second one is the optimisation of our model, meaning getting it close to the true distribu-
tion which often is not equivalent to simply optimising eq. 2.14. Both problems are quite complex, task
specific and still part of active research, with for example the approach to generate new data points [6]
to better understand data generating processes and inflate existing datasets. For this reason we omit the
issues we might run into with our dataset completely and just briefly present an optimisation algorithm
called Adam [7] that we later want to use while referring to [2, Chapter 7-8] for a deeper insight.

Adam is a stochastic gradient descent algorithm with adaptive estimates of lower order moments. It
is based on the so called gradient descent algorithm which is an optimisation algorithm that uses the

gradient of the objective function, in our case:

1

L£(0) = D]

> log(Be(Y =y|X =) + A6z, (2.15)
(z,y)€D

to find a global minimum by making parameter alterations in the opposite direction of this gradient (i.e.
in the direction of the steepest decent) until convergence. One notices that we multiplied eq. 2.14 with
a factor having the effect of averaging the gradients over all samples. We also added a term by which we
want to control the magnitude of our parameters. This practice is called Ly regularisation and is one of
numerous tactics to account for overfitting, meaning that our model over adapts to the given samples of
our distribution (i.e. our dataset) rather than to the distribution itself. Overadaptation is often unwanted
since in many cases it results in bad performance on previously unseen data. The parameter \ € Rf{ in
this context is called weight decay parameter.

It has proven to be effective not to calculate the gradient for the whole dataset but instead uniformly and

without replacement sample fixed size subsets, so called mini batches from the training set. This subsets




are then iterated threw, calculating the gradient of the objective function for the respective subset and
making according alterations to the parameters in every step [2, pp. 151-153]. This practice goes by the
name stochastic gradient descent while the size of the mini batches is called batch size and one iteration
threw all mini batches (i.e. the whole dataset) is named epoch.

The Adam algorithm (alg. 3) builds on this while not only utilising the gradient of the current time step
but also calculating individual first and second moment estimates from previous timesteps making the
stochastic gradient descent algorithm more efficient. For the mathematical properties of the algorithm

see [7].
2.2.4 CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks (CNNs) are just another type of model, working with different layer types
compared to the FNNs described above. However, the goal of approximating p(Y'|X) remains and the
foundations of classification and learning, therefore, still are valid. Hence it is sufficient to just to discuss

the basic building blocks of convolutional neural networks in this section, while optimising the parameters
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Fig. 2: A two-dimensional convolution performed on a two-dimensional input. The graphic shows every

is done the same as with a FNN.

=

it
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consecutive operation with the kernel moving over the input constructing one output by summing up all the
values of interest in every step. In this example, we do not pad the input (meaning adding values to the sides of
it) and use a stride of (1, 1) resulting in one step along the first tensor axis and one along the second with the

kernel moving along the tensor axes in their given order.

The first building block would be a simple convolutional layer, which is quite similar to eq. 2.10 with the

only difference that K; is now a tensor of arbitrary shape called Kernel, and we also no longer perform




a matrix multiplication but a convolution:
H;, =g (K;*H;_1). (2.16)

Our activation function remains and is still in most cases a ReLU while the parameter vector of our
model is formed by this kernels K;. Now a convolution allows for differently shaped input as to the
FNNs which, due to the matrix-vector product, could only process vectors. The convolution operation,
however, is defined for arbitrarily shaped tensors (H;), with the restriction that the number of dimensions
of kernel and input must match. This makes CNNs interesting for computer vision and especially image
classification, where a sample (e.g. an image) is naturally represented by a tensor of shape C' x W x H,
namely the number of channels a width and height. In this context it is common to talk about a
tensor having C' channels of W x H feature maps. The convolution operation is not only chosen out of
convenience but also for incorporating a concept that we know is intrinsic to some data (e.g. image data)
and that is the strong covariance of neighbouring? entries in a sample. A simple example of a convolution
is depicted in fig. 2.

Another building block is the pooling operation. That is a parameter-free downsampling operation which
is quite similar to a convolution (mean pooling is indeed a convolution). It takes a tensor as input and
starts with a specified entry calculating the maximum, sum or mean overall entries that lie in a defined
distance (sometimes referred to as window) to generate the first entry of the output. In this context,
distance is commonly defined for every tensor axis individually. Done with the first entry this filter moves
to the next, following the given stride, repeating the above operation. The stride, for pooling as well as
for the convolution, defines a rule on how to parse the image. It is normally given as ”step size” along
each tensor axis, with the tensor axis being parsed in their given order. Therefore, this stride, together
with the padding and distance (or for convolutions the kernel size), defines the shape of the output in
the end. The mathematical concepts of pooling, convolutions, stride and padding are more thoroughly
discussed in [2, Chapter 9.

The last operation we briefly want to introduce is the batch normalisation, proposed in [8]. If we
consider an input to our batch normalisation layer of dimension d say h = (hy,...,hq) and a mini

batch B = {hV, ..., h(m)} of such inputs, then the layer performs the following operations:

1 m
_lsm
s = — > h (2.17)
r=1
o2 =1 f: (h,“”) —n )2 (2.18)
B m e B
o B™
A ey (2.19)
Vog+e
vy =yoh" +3 (2.20)

Here y is the output of the layer, 4, 3 are learnable parameter vectors of dimension d (meaning they

are also part of ) while € is a vector filled with small values added for numeric stability. ® denotes the

2Neighbouring is an abstract term here and its meaning can differ depending on the data. In the context of images, the

term indeed refers to neighbouring pixels.
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pointwise product while the power operation in eq. 2.18 is as well pointwise.

By normalising the layer inputs inside the network and introducing a learnable mean and standard
deviation the batch normalisation allows for accelerated computations as well as often improving the
performance of a neural network. The reasons for this positive impact are actively discussed in the deep
learning community with several opinions about where it stems from. The original paper [8] assumed that
batch normalisation would mitigate the change of the layers input distributions during training called
internal covariate shift while some argue that it has a smoothing effect on the loss surface [9] and oth-
ers believe it decouples the length and direction of the parameters [10]. On one thing they, however, all

agree and this is the empirically proven beneficial effect of batch normalisation during training and testing.

2.2.5 THE IMPLEMENTATION

The actual implementation of the above concepts is a topic of itself and we do not want to discuss it
here. However, we do want to emphasise, that with the rise of more advance, and high-level toolkits
[11]-[13] the implementation of models, losses and especially back-propagation has become increasingly
easy. We also want to give credit to the toolkit we are heavily using to conduct our experiments, going
by the name PyTorch [13]. The DenseNet model [14], as well as a lot of the used loss and optimisation
algorithms already come with this library. The PyTorch toolkit and all our experiments are written in

Python 3.6.9. [15].
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RELATED WORK

Our approach of investigating a specific traffic scenario in urban and suburban domains for the goal of
better understanding the statistics and real-world realisations of critical situations in traffic has, to the
best of our knowledge, not been done before. A reason for that might be that although the common
configurations are frequent in reality and therefore also in urban- and suburban-scene datasets, the critical
ones are not. Meaning that the analysis would indeed be possible, but hardly lead to interesting results,
if the data available is too scarce, the extraction of the metadata claims too many resources or is not
even possible due to missing information and quality. With the ever-increasing number of public datasets
and the growing amount of meta-information (besides the raw image data) coming attached, the named

problems are mitigated if not even eliminated, making the proposed analysis quite promising.

3.1 URBAN- AND SUBURBAN-SCENE DATASETS

This rise of available urban and suburban scene datasets started with the CamVid and the LaRA dataset.
The first dates back to 2008 and provides 700 instance-segmented images all recorded out of a vehicle
in the city of Cambridge in England [16]. The latter was published by a French research group in 2010
recorded in the city of Paris. It contains 9.168 annotations in the form of bounding boxes and four
labels assigned to the vehicle traffic lights [17]. Three years later in 2013 KIT (Karlsruhe Institute of
Technology) released the KITTY dataset consisting of six hours traffic scenarios recorded with a variety
of sensor modalities (e.g. colour and grayscale cameras, a GPS receiver and distance measurements
provided by a laser scanner) in addition to object annotations of traffic participants in the form of 3D
tracklets [18]. Another dataset with the name Daimler Urban Scene was published in the same year
comprising of 5.000 stereo images of which 500 come with pixel-level class annotation from a total of
five classes [19]. Then in 2015, the University of California released the so-called LISA dataset which
comes with 51.826 traffic light annotations and seven labels, recorded in the city of Sun Diego [20], [21].
Following one year later in 2016 was the Cityscapes dataset containing 25.000 images together with GPS
and disparity data providing hand labelled pixel- and instance-level segmentation on roughly 3.500 of
this images and further coarse annotations on 20.000 of them (for the test set neither fine nor coarse
annotations are publicly accessible) [22]. In the following year, a collaboration of Bosch and the Czech
Technical University in Prague published the Bosch-Small-Traffic-Light-Dataset (BSTLD), comprising of
5.000 images for training and a video-sequence of 8.334 frames for evaluation, both recorded in the United
States. The dataset has a ground truth of 24.242 hand-labelled traffic light annotations, in the form of
bounding boxes, together with an assigned label from a total of fifteen classes in the training set and
four in the evaluation set [23]. At last, in 2018 the University of Ulm released the DriveU Traffic Light
Dataset (DTLD), which is up to this day the biggest publicly available traffic light dataset with 232.039

annotations from 344 unique classes. The dataset was recorded in eleven German cities and comes with
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calibration and disparity data, as well as geolocation and vehicle velocity information [24].

More datasets contain urban- and suburban-scenes, for instance, COCO [25] or the dataset described in
[26], however, they are either in private hands, as it is the case for the latter, or address a more general
setting as it is the case for the first.

An analysis of all named dataset would be to time and resource-consuming, due to the process of extracting
necessary meta-information from the raw datasets, hence we chose the two leaders in terms of samples,
namely Cityscapes and DriveU for our purposes. The loss in data we face, when discarding all the other
datasets, is not that severe, as both, DriveU and Cityscapes, outnumber their predecessors at least by a
factor of ten. They also have some more, but also very significant advantages we will take a closer look

at in sec. 4.

3.2 TRAFFIC LIGHT IDENTIFICATION AND CLASSIFICATION

Albeit the analysis we are planning has, to our knowledge, not been done before there exists scientific
research related to the methods we intend on using, to extract information from the datasets. Besides the
panoptic segmentation and depth of the scenes, we are reliant on the information about the state, type
and relevance of the traffic lights, hence a major part of this thesis will be devoted to the development
of a traffic light classifier.

Those traffic light classifiers face a great interest of scientists and companies, as they are a substantial
part of every autonomous or part-autonomous driving system. In this context, however, they are often
included in a traffic light identification and classification pipeline that localises as well as classifies them.
For our purposes, however, classification is sufficient, as the position is contained in the ground truth of
the used datasets. Our model has a different main focus, namely the classification, and in particular the
number of classes we want to classify, including type, state and relevance information. In contrast to that
early approaches solely focused on the state of the traffic light (e.g. green) [27], and only more recent
works classified the type (e.g. right arrow) as well, while the relevance feature, we intend to include, is
merely accounted for in the newest publications [28].

The approaches taken in the field of traffic light classification, also called recognition?, are very diverse and
range from methods of classifying the winner of a majority pixel count [29], using the nearest neighbour
method on Gabor image features [30], to support vector machines, applied to transformed representations
of the traffic light images [31]-[33]. Some earlier works also made strong assumptions about the shape
and/or colour of the traffic lights and their surroundings and used adaptive template matching to classify
the state and in some cases the type too [27], [34], [35]. Newer approaches, due to the accessibility of
vast amounts of data (sec. 3.1) and the rapid increase of performance of neural networks [36]—[38], mainly
rely on deep learning, to classify, but also identify, the traffic lights in urban- and suburban-scenes. A
typical pipeline setup for this methods would be the localisation of the traffic lights in the image by an
interest-point detector, followed by classification on these regional proposals utilising a shallow [39] or a

convolutional neural network [23], [40], [41]. Yet, there are also works, that perform the identification and

3We will use both terms interchangeably.
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classification procedure with one network [26], making a careful design of pre-segmentation algorithms
obsolete.

Following the overall trend towards deep learning, we also use neural networks to conduct our classifi-
cation. However, with our priorities differing from the ones in the papers described, since deployment
on a vehicles GPU/CPU is not part of our goal, we harness a bigger network, frequently used in image
classification task like ImageNet [36], where size and speed are lesser of a limiting factor. This network
by the name DenseNet [14], is indeed only a part of our pipeline and classifies solely type and state of
the traffic lights. The relevance feature is predicted by a separate simple feed-forward neural network,
being fed the type and state as well as locality and geometry information. The research concerning the
recognition of the relevance feature is currently still quite scarce and there is, to the best of our knowledge,
no approach doing a robust relevance classification. Some models use the relevance feature, however, not

classifying it but using precomputed prior maps that already include the relevant traffic lights [28], [42].
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THE DATASETS

In this section, we give a short introduction to the used datasets and reason about selecting them for this
thesis. We also describe and introduce the modified DriveU dataset called DriveUC, used to train our

traffic light classifier.

4.1 DriveU

DriveU, published in 2018, is one of the biggest open access datasets providing human labelled traffic
lights in suburban and urban domains on a scale of 230.000 annotations. The images were taken in
eleven German cities during the daytime. In addition to the annotations, disparity data is provided,
which allows for pixel depth estimation. The label of one sample includes information about relevancy
of the traffic light, its installation orientation (e.g. horizontal), the number of the light units, its state
(e.g. green) and the type (e.g. left arrow) as well as some other properties. However, for our purposes

the state, the relevancy and the type classes are sufficient. We decided for DriveU because it is one of the

Fig. 3: A sample from the DriveU dataset. On the right-hand side is the real world image and on the left-hand
side the disparity image. The bounding boxes of the traffic lights are annotated with red colour in the real-world

image.

biggest open-source datasets on traffic light classification with a clear and consistent labelling policy. It
also provides meta information for every image, such as disparity data, geolocation and vehicle velocity.
The last but very important benefit of DriveU is its similarity to Cityscapes, a property that is discussed
in sec. 4.2. In fig. 3 we depicted a sample from DriveU together with its disparity map. For a more

comprehensive introduction to the dataset, we refer to its paper [24].

4.2 CITYSCAPES

The Cityscapes dataset is a large scale urban scene dataset for pixel-level and instance-level semantic
segmentation from the year 2016. It was recorded in the streets of fifty different cities in Germany, during
daytime and contains 5.000 high-level annotated images and further 20.000 coarse annotated images. In

addition to the instance segmentation corresponding disparity data is existing to calculate pixel depth.
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The labels consist of 30 classes of which we only need the person label, the vehicle and some environ-

ment labels (road, sidewalk, ground, terrain, parking). We choose the dataset because it is the only

Fig. 4: A sample from the Cityscapes train dataset. On the left-hand side is the real world image, in the

middle the instance segmentation and on the right-hand side the disparity.

panoptic-segmented dataset of urban scenes with disparity information on such a high number of images.
Furthermore, the high-quality segmentation of the dataset is essential for this project, since we heavily
rely on this segmentation when localising pedestrians and traffic lights. On the one hand, we can use the
ground truth of the test set composed of 3.475 samples. On the other hand, we can rely on research in
the field of panoptic-segmentation regarding this dataset, and utilise a model trained on the train set of
Cityscapes to segment the test and train-extra, as well as the DriveU dataset for more samples. Thus,
some further argument for Cityscapes is that both, the DriveU and the Cityscapes dataset have the same
image resolution (2084x1024 pixels), very similar camera positioning and are both recorded in Germany.
The latter matters because the lighting, brightness and also the colour spectrum are dependent on the
position of the sun, humidity, temperature and reflected light of the terrain or briefly the geolocation and
weather. With this conformance of the two datasets, it is easier to transfer image classification models
between them as it is our plan, with the traffic light classifier, and the panoptic-segmentation model. One
sample from the Cityscapes dataset is depicted in fig. 4. For further information see the paper about the

dataset [22].

4.3 DriveUC

We want to train our traffic light classifier on the data from DriveU and deploy it on Cityscapes. However,
for obtaining decent results we need the distributions of traffic light images in DriveU and Cityscapes to
be as close as possible, thus our model can generalise from one dataset to the other. As we work with only
the cropped images of traffic lights, computational efficiency demands the creation of a dataset that does
not contain the full 2048 x1025 images but only the crops with much smaller pixel measures. This means
we have to make a very important decision being what to crop, since with all further data augmentations
we are limited to these crops. The first idea would be to just use the very accurate bounding boxes that
come with the DriveU ground truth. Doing so would provide us with a dataset of perfectly cut out traffic
lights with almost no background, looking like fig. 5. This would not be an issue if the Cityscapes samples
looked alike, but they do not. In the Cityscapes dataset, the bounding boxes of the traffic light containing

only one object with almost no background are not given but therefore an instance segmentation. This
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Fig. 5: Some cropped traffic lights from the

DriveU dataset.

means we have a traffic light polygon that often does include mounting and housing parts and parts of
the pole the traffic light is attached to. Hence, the traffic light is often not in the centre of the image
and we are confronted with a significant amount of background pixels. We even raise the number of
background pixels further, by cropping not only the polygon but a rectangle including the polygon, as
we can not input the plain instance-segmentation to our model. Another problem is that one polygon
instance sometimes includes not only one but a conglomerate of traffic lights if they are very close to each
other (fig. 4).

Thus to account for the background pixels leaking into the polygon threw bad annotations and/or the
annotation of the housing/pole, additional traffic lights and mounting parts we perturb the accurate
bounding boxes of DriveU in the cropping process. Doing so, we hope to achieve an assimilation of the
traffic light crops of Cityscapes and DriveU.

Now the concept of the cropping scheme is, that when a traffic light sample in DriveU is large enough
(we decided for five pixels in width and five pixels in height), we do not only crop the original bounding

box but also three additional bounding boxes with randomly perturbed bounds.

Fig. 6: A visualisation of how the random z

cropping process works. The original Y

bounding box is depicted in black. The
Ah,

maximum and minimum height and width

borders, which include all possible random
crops, are shown by the gray area. For a
new bounding box the left upper corner is h

sampled from a discrete uniform distribution

limited by the red area and the lower right

corner by one limited by the blue area. The w

ratios in the sketch are accurate with respect

to eq. 4.1 and eq. 4.2. Aw_ Awy

For this we define four scaling factors, namely:
sp, =03, s, =01, s, =1, 5, =01 (4.1)

And then, using this scaling factors, we construct the boundaries for every sample (with width w and

height h) individually by:

Ahy =sp, -h, Ah_=s,_-h, Awy=s5,, -w, Aw_ =S5, -w. (4.2)
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The resulting values are finally rounded to integers (i.e. pixel values). If (xg,yo) and (x1,y1) are the
upper left and the lower right corners of our original bounding box in the coordinates of the 2048 x1024

pixel image, then we will obtain the coordinates of our perturbed bounding box by:

Zo ~U(xg — Ahy, zo+ Ah_; 1)
Jo ~U(yo — Awy, yo + Aw_; 1)
Ty ~U(x1 — Ah_, &1 + Ahy; 1)
1~ Uy — Aw_, y1 + Awy; 1).
In this context U(a,b;c) is the discrete uniform distribution is giving equal probability to all values in
{a,a+¢,...,b—c,b} and zero probability to all other values. One should also note that the coordinate
system of an original DriveU image has its origin at the upper left corner with the y values increasing
from top to bottom. The principles of this random cropping are shown in fig. 6.

As we already mentioned, we first crop the original image and then, when the traffic light object satisfies
the condition of w > 4 and h > 4, we crop three more images with the procedure described above. If the
points defining the bounding box lie outside the picture, we correct them by substituting the z and/or y
components that violate the image boundaries with the respective boundary value. To prevent sampling
the same image twice, we discard all crops that have already been sampled and sample again until we get
a crop that has not been in our collection already. We refer to the dataset we obtain from this procedure
as DriveUC.

Comparing the traffic light features of DriveU, DriveUC and Cityscapes?, shown in fig. 23 under sec. C
in the appendix, one notices that with the perturbed cropping process we can make the Cityscapes and
the DriveU traffic light samples look more alike, regarding depth, width and height. Especially the more
symmetric histograms of width and height, with a longer tail towards bigger traffic light crops, are a
common property of Cityscapes and DriveUC, while DriveU shows no strong distinction of this property.
One notices, however, that the bump in the width histogram of Cityscapes could not be reproduced in
DriveUC and that the tail of the width and height histogram, we talked about, is still more developed in
Cityscapes than in DriveUC.

Another thing, notable when looking at the feature-histograms (fig. 23), is the similarity between the
depth histograms of DriveU and DriveUC. The depth values are calculated as the median of the depth
of all pixels in the crop, where the median is chosen because of its more stable properties when it comes
to noisy data. And indeed, even with the crops of DriveUC involving more background pixels, the depth
of the traffic lights seems not to shift significantly, when perturbed-cropping is applied. Only at further
depths, the values start to differ between DriveU and DriveUC, since the crops tend to be smaller and
hence even the median becomes more inaccurate.

In tab. 14 under sec. B in the appendix, we summarised the appearances of the different classes for the

4For the train-extra and the test set of Cityscapes we use our panoptic-segmentation produced optained with the model
from sec. 6, while for the train set we use the ground truth. The bounding boxes are constructed by forming the smallest

rectangle enclosing all pixels of an instance in the segmentation.
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newly created DriveUC dataset, together with the mean and standard deviation of with and height in

every class.
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TRAFFIC LIGHT CLASSIFICATION

In this section we want to discuss the development and training of the state, type and relevance classifier.
It consists of a convolutional neural network which determines the state and the type and a simple feed-
forward neural network that predicts the relevance. The first network uses the cropped images from
DriveUC while the second one makes its prediction based on the state, type, the position relative to the
camera (i.e. to the car) and the pixel measures of the sample. The networks are separately trained, on
DriveUC. After the training, they are chained together to the complete model, with the type and state
information in the input of the relevance classifier being produced by the first network. Finally, this

combined classifier is tested on the test set of DriveUC to obtain an estimate of its performance.

5.1 TYPE AND STATE CLASSIFICATION

5.1.1 ANALYSING THE DATA

We first want to take a look at the data we are working with. Concerning the type and state classification
task, the data comes as cropped traffic light images from the DriveUC dataset, with some samples depicted

in fig. 7. The samples were drawn at random to give a decent impression of the composition of the data.

relevant, occluded not relevant relevant not relevant  not relevant, occluded relevant
vertical vertical vertical vertical vertical vertical
relevant three lights three lights three lights three lights three lights three lights
”0\56’3';‘;?“ vertical red off red red green green "O‘tl:tli‘;?”t
i circle cyclist circle arrow left circle circle "
two lights three lights y not relevant, occluded three lights
red ’ vertical
off v green
circle i two lights circle
off
1 circle
not relevant relevant not relevant  not relevant, occluded
vertical not relevant vertical vertical vertical not relevant el .
three lights - three lights two lights two lights vertical not relevant not relevan
red-yellow vertical red red red three lights not relevant . vertical vertical
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i i two light g
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pedestrian off red arrow left pedestrian
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circle
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Fig. 7: Some cropped traffic lights together with their label.

For our purpose, it is sufficient to only use the state- and the type-information and set aside all the other

classes. The type is taken into account because it contains information about who the traffic light is
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important for, which can later be supplementary when classifying the relevance. The relevance feature,
on the other hand, is not included in this first model, due to its contextual nature not contained in the
images. Meaning, if even a human is not able to classify the relevance feature from the given information
than the network is also very unlikely able to. And for the samples in fig. 7, as well as the rest of DriveUC,
it is almost impossible to guess the relevance feature without any further context.

However, adding a class that can only hardly be derived from the input data introduces instability in the
learning process, since the weights will also be adjusted to minimise the loss of this class. Therefore, we
leave out the relevancy feature here and come back to it later in sec. 5.2. This leaves us with a two vs.
rest multiclass-classification problem with a label of length twelve, consisting of five entries for the state
({off, red, red-yellow, yellow, green}) and seven entries for the type ({circle, arrow straight, arrow left,
arrow-straight left, arrow right, pedestrian, cyclist}).

Besides omitting the relevance class, we also discard some samples from the dataset, namely the ones
that have a pixel width below three. The reason for this is that for our analysis in sec. 7, we are mainly
interested in the traffic lights that are closer to the vehicle and hence wider and taller. First of all, they
are easier to classify as they provide more pixel-information and second, the pedestrian crossings they
are possibly related to, are more likely to be fully depicted or even existent in the image.

If we now apply this minimum width threshold we reduce the DriveUC dataset from 791.547 to 777.918
samples, discarding about 1.7 % of the dataset. The exclusion of those samples is, however, quite beneficial
to the learning process, since samples below a width of three often do not contain any information at all
(see fig. 7, first row, fourth picture) while the labelling was probably done with contextual information.
Using such samples can again result in instability during training and for them merely being of interest
to us, nor make up a major part of our dataset, we exclude them from training and testing.

In this chapter (sec. 5.1) when we talk about DriveUC and no further specification is given, we mean this

reduced dataset.

5.1.2 THE MODEL

The used model is the convolutional neural network proposed in [14] by the name Dense Convolutional
Network (DenseNet). It is a widely used network in image classification [43] and although it was developed
in 2016 the vanilla implementations still ranks 22t* on CIFAR-10, 16"* on CIFAR-100 and 111** on
TmageNet [36] according to [44]-[46], using top-1-accuracy as criterion.

The network implements the idea of a direct connection from one layer to all subsequent layers. Hence,
with H;(-) denoting a composite function of for example batch normalisation and convolution followed

by a rectified linear unit, the output of the i*” layer is defined as:
x; = Hi([xg, 21, ..., Ti—1]), ['] denotes tensor concatenation. (5.1)

This architecture increases information and gradient flow threw the network by its dense connectivity
and also facilitates the combination of low and high level features of which the first are gained closer to
the input-layer while the latter are extracted deeper in the network [2, p. 331].

The architecture we use is the DenseNet-B implementation for which the composite function consists of
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the following consecutive operations:
bn — 1x1conv - ReLU — bn — 3 x 3 conv — ReLU. (5.2)

The letter B is derived from the term bottleneck and aims at the first three parts of the upper flow
diagram that reduce the number of input feature maps for the succeeding functions. If necessary, a stride
of one and zero-padded edges are used before the conv-operations, to keep the feature map dimensions
fixed. We do stick with the notation of the paper and call eq. 5.2 a dense layer.

To implement the down-sampling which is a essential part of convolutional-neural-networks the dense
layers have to be grouped into dense blocks, which are interconnected with transition layers. The reason
for this is that the down-sampling (e.g. pooling) changes the size of the feature maps resulting in the
concatenation of layer-outputs in eq. 5.1 no longer being possible. Hence the network has to be divided
into several blocks between which the down-sampling of the feature maps is realised by layers build
from a 1x1 convolution followed by a 2x2 average pooling. Together they cut in half the number of
feature maps as well as their width and height respectively. After every dense block there is also the
opportunity to implement a dropout function, that randomly drops features during training imposing
some regularisation on the network by preventing co-adaptations of the weights to the training data.

With the knowledge about this elementary building blocks the model is now defined by its initial layer,

Fig. 8: A visualisation of a 5-layer dense
block with a growth rate of &k = 4. For
clarity reasons the bottleneck layers have
been omitted. The graphic is taken from

[14].

its dense blocks with the dense layers they contain respectively, the classification layer and the growth
rate k of the network. Hereby growth rate is a hyperparameter that sets the number of feature maps the
conv-operations in eq. 5.2 produce. The bottleneck-convolution outputs 4k feature maps, while the 3 x 3
operation outputs k. This results in k£ outputs for every dense layer which makes a total of kg + 7 - k
feature maps after the i** layer of a dense block if the initial number of channels is kg. An conceptual
example of a dense block is visualised in fig. 8.

The final implementation of the model is shown in tab. 1. As said above, we limit ourselves to the state-
and type-classification in this part, thus the number of outputs is n = 12, of which the first five, as
well as the last seven entries, are mutually exclusive. For this reason, we apply the softmax-operation
separately to those two domains and not to the whole label. One also could have used thirty-five labels
and perform a one vs. all classification, however that would have drastically reduced instances in classes
like (red-yellow, arrow-straight), while also entangling the state and type classification, which is against

the nature of the problem itself, as the type information should be completely detached from the state
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Layer Configuration

7 X 7 conv, stride 2
Initial Layer

3 X 3 max pool, stride 2

1 x 1 conv
Dense Block (1) x 6

3 x 3 conv

1 x 1 conv
Transition Layer (1)

2 x 2 average pool, stride 2

1 x 1 conv
Dense Block (2) x 12

3 X 3 conv

1 x 1 conv
Transition Layer (2)

2 X 2 average pool, stride 2

1 x 1 conv
Dense Block (3) X 24

3 x 3 conv

1 x 1 conv
Transition Layer (3)

2 x 2 average pool, stride 2

1 x 1 conv
Dense Block (4) x 16

3 x 3 conv

7 x 7 adaptive average pool
Classifiacation Layer

n-D fully connected layer, softmax

Tab. 1: The used DenseNet architecture. Here the conv-operations corresponds to the sequence bn-conv-ReLLU
(conv with stride one) and n is the number of classes. The drop-out after every dense block is omitted in the

table, since it is only used during training and no substantial part of the model.

and vice versa.
5.1.3 PREPROCESSING OF THE DATA

Before we can pass our samples to the network, we first have to resize them to equal width and height. To
keep the rough ratio of 3:1 (see tab. 14) and still have the image dimensions being powers of two, we choose
an image size of 128x32. The reason for us wanting divisibility by two stems from the characteristics of
the downsampling in the network, wherein every step the feature-map dimensions are cut in half.

To synthetically inflate the number of samples and reduce the likelihood of overfitting there are several
possibilities of data augmentation. We give here a list (tab. 2) of some common and easy to implement
practises and reason about whether to use them for our purpose and in what way.

All the augmentations are applied at random, meaning that for every sample the augmentations are
different in every epoch. We only specify the domains for the translation, rotation, scaling and brightness,

saturation, contrast and hue and then sample the adjustment values uniformly from those.
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Augmentation

Description

Applicability

Domains

Affine A translation, rotation | This operation is useful with reasonably | rotation: (—5°,5°)
Transformation and scaling of the im- | small values for all the operations since | translation (relative):
age. we do not want the image to get flipped | = : (—0.1,0.1),
sideways, turned over, or an active light | y : (—0.1,0.1)
bulb completely shifted out of the im- | scaling (relative):
age. (0.8,1.2)
Flipping Flipping the image We can neither use the horizontal flip

horizontally or verti-

cally.

nor the vertical flip, as traffic lights
contain spacial information that would
be changed threw these alterations (e.g.
flipping of an arrow pictogram from left
to right, flipping the order of the traffic
light bulbs putting green on top and red
at the bottom).

Colour Jitter

Changing the bright-
ness, saturation, con-
trast and hue of the

image.

As with the affine transformations, we
can use this augmentation, but should
be careful with the magnitude of the
change. Especially with the adjustment
of the hue, because a too great of a
change here could result in a red traf-

fic light turning green.

brightness: (—0.3,0.3)
contrast: (—0.3,0.3)
saturation: (—0.3,0.3)
hue: (—0.05,0.05)

Crop

Crop out one or more

frames from an image.

Since we already cropped the images in
DriveUC and further operations of this
type could result in the exclusion of the
light bulb that is on, we omit this trans-

formation in the training process.

Gaussian Noise

Sample i.i.d. noise of a
Gaussian distribution
with mean zero and a
global standard devia-
tion and add this noise

to the pixel values.

There should appear no problems using
this practice if the standard deviation is

kept in a reasonable range.

standard deviation:

o =0.015

Tab. 2: Selecting the data augmentations. The values for the applied augmentations are sampled from a

uniform distribution over the given domains. For the Gaussian noise, the standard deviation is fixed to about 10

% of the standard deviation of the colour channels (eq. 5.3) after the normalisation. Except for the Gaussian

noise alteration, which we implemented ourselves, the alterations all come together with the PyTorch library

[13).

24



After the resizing and the application of the alterations, except for the adding of Gaussian noise which
follows after, the inputs are normalised in every colour channel, to the respective mean and standard

deviation of the DriveUC dataset:
w=(0.181,0.182,0.184), o = (0.166,0.158,0.158)° (5.3)

This is done to facilitate the back-propagation during training an accelerate computations [47] as well as

balancing the features to similar ranges.

5.1.4 EXPERIMENTS

As our criterion, we use the cross-entropy with weighted classes and as an optimiser, we chose the Adam
algorithm proposed in [7] and briefly discussed in sec. 2.2.3. Weighted classes mean that we weigh the

outputs of our model in the loss, by the appearance of the corresponding class:

n
we=1——=, Nayl = ch. (5.4)
ceC

In this equation, n. denotes the number of appearances of the class ¢ in the dataset used for training.
The weighing as in eq. 5.4 is done for the type and state individually and using this weights we obtain

the loss of a mini-batch of size r as:

£:(0) = f% (D233 wn ™ = 1) og(or) +w, 1{yi™ = s} log(on,s) ) + A0l (5.5)

k=0teT s€S
Here

ke = (N (@, 0)), (5.6)

is the entry of the models output of the k" sample, corresponding to the class ¢. The y,, is either the
states or type ground truth of the k" sample, whereby the correspondence is indicated with upper case
letters. Finally 1 is the indicator function, being one if the condition in its brackets is full filled and zero
otherwise and T, C are the sets of possible type and state classes respectively.

We set the hyperparameters of the Adam optimiser to the default values (8; = 0.9, B> = 0.999, ¢ = 10~%)
recommended by the paper [7] and use a batch size of 256, leaving us with the decision about the drop
rate, the learning rate and the weight decay.

Regarding the simplicity of our classification model, approaches like Bayesian hyperparameter optimisa-
tion, proposed in [48], seem too sophisticated and not worth the effort. On the other hand, a grid search
[47] is quite simple to implement but computationally expensive. We, therefore, decide for a random
search as suggested in [49], which is straight forward to implement and has a reasonable computational

cost. We do however apply some small modifications to the algorithm.

5Listed are the values that were calculated after the resizing process, however, the networks were trained with pu =
(0.158,0.156,0.161), o = (0.166,0.158,0.158), is the mean and standard deviation before the resizing. The error had not
been noticed until there was no time left for a correction. For the discrepancy not being that big, this should, however, not

be a severe mistake.
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We start with a random search of the discrete hyperparameter space using the following grid:

drop rate = {0, 0.1, 0.2, 0.3, 0.4, 0.5}, (5.7)
learning rate = {10™" | n € [0, 5]}, (5.8)
weight decay = {107" | n € [0, 5]}. (5.9)

For twenty models we uniformly sample drop rate, learning rate, weight decay from the above sets and
then train all these models on a small arbitrary subset of the DriveUC training set (roughly 18.000
training, 2.000 validation samples). After the random search is finished we use the PathSearch algorithm
(alg. 1) on the best parameter configuration regarding the validation loss, to explore the area around

them for even better parameters. As alteration schemes we use:
P ={-0.1,0,0.1} x {0.1,1,10} x {0.1,1,10}\{(0,1,1)}. (5.10)

Here x denotes the cartesian product and \ the set-theoretic difference (we exclude the identity al-
teration). The first dimension corresponds to the drop rate, the second to the learning rate and the
third to the weight decay. If we now have a parameter vector, say p = (dr,lr,wd) and we alter it with

p = (—0.1,1,10) then the new parameter configuration produced by APPLY is:
APPLY ((dr,lr,wd),(—0.1,1,10)) = (dr — 0.1, Ir - 1, wd - 10). (5.11)

Hence the drop rate (dr) is shifted while the learning rate (Ir) and the weight decay (wd) are scaled. alg. 1
does however not take into account that the drop rate is bound to the range [0, 1], which is something
that is taken care of in the actual implementation by just discarding branches of the search where the
drop rate would become negative or greater one.

Threw out the random- and path-search we also use an early stopping mechanism that stops training
if the validation loss shows strong and rapid fluctuations or is even increasing over a period of epochs.
For this we use the earlyStopping algorithm (alg. 2). This algorithm applies a mean-filter-convolution to
the validation loss and then performs a linear regression on a defined interval. If this regression results
in a slope above zero, we stop the training. We use earlyStopping with a filter size of five and train for
ten epochs before checking the early stopping condition. The interval size is set to fifty, meaning that
after epoch t € Ny, we mean-filter the loss and then perform a linear regression either on all validation
loss data points, if ¢ < 50 or the most recent fifty data points if ¢ > 50. We limit the total number of
training epochs with 150. By this, together with the early stopping and the reduction of the dataset,
we can drastically reduce the running time of the search, while the relative results between models of
different hyperparameters should not change significantly when using the whole dataset and train to a
higher number of epochs.

When finished with this combination of random- and path-search we chose the best hyperparameters on
the base of the validation f-scores and the loss. We then train a model with the respective hyperparam-
eters for 500 epochs on the whole DriveUC train set. From this 500 epochs, we then chose the model

with the minimal loss on the validation set (10 % of the train set) and train it again for 500 epochs,
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however with a learning rate reduced by a factor of 10. Finally, we chose the model with the highest
validation f-score from this last training to use it in our traffic light classification pipeline. The f-score
is the harmonic mean of the precision and recall®, both being the predominant performance measures
in the context of traffic light classification and recognition [20]. From now on, if we are dealing with
a multiclass classification problem and no further information is given, the f-score, precision and recall,

always denote the sample weighted mean over the respective score in every individual class.

5.1.5 RESULTS

The results of the random path search are listed in tab. 15 under sec. B in the appendix. A visualisation

of the weighted validation f-score for the searched configuration is given in fig. 9. We notice that the drop
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Fig. 9: The random path search visualised. Every patch (i.e. cross) corresponds to a certain configuration of
drop rate, learning rate and weight decay. The colour of the patch indicates the best f-score on the respective
configuration. The f-score is calculated by taking the weighted mean overall class individual f-scores. The white

patches correspond to configurations that were not explored.

rates of 0 and 0.5 were merely searched, while the excessive search took place at drop rates of 0.1, 0.2, 0.3,
0.4. Tt also seems that the drop rate does not have a severe impact on the performance of the network.
We can see this when looking at the patches of the drop rates that were searched more comprehensively,
with only a slight difference in the f-score for every learning rate and weight decay patch going to higher
drop rates. Another thing that we notice from the plot, is that the mesh size of our random-path-search
grid is quite reasonable since neighbouring patches (i.e. hyperparameter configurations) do not show a

drastic change in validation f-score around our optimum, which means, that even with a finer grid there

6Performance and recall are introduced in [20], where also their fit for the traffic light classification and recognition task

is discussed.
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should not be much improvement in performance. This assumption is however only true if the loss surface
in the hyperparameter space is continuous and does not show a rapid increase or decrease on distances
below our mesh size.

Since there is a discrepancy between the hyperparameters producing the best validation loss, and the
ones producing the best validation f-score (tab. 15), we chose the model that performs best regarding its

position in the validation f-score and loss ranking. The model with:

drop rate = 0.3, (5.12)
learning rate = 1 x 1074, (5.13)
weight decay = 1 x 1072 (5.14)

ranks first in the f-score category and fifth in the loss category, while the leader in the loss category
only ranks ninth in the f-score category. Hence we chose the hyperparameters of the leader of the f-score
category for our final model. The final choice should not make a big difference, however, since around
this optimum the performance of the models is quite similar (fig. 9), and the fluctuation could be very
well caused by the initialisation and the parsing order of the dataset during training.

The course of the stage wise training of the type and state classifier is depicted in fig. 10. We reach the

best validation f-score in epoch 794 with the results summarised in tab. 3. At last we test the model on

Category | Precision | Recall F-Score | Accuracy
total 0.959829 | 0.959272 | 0.959435 | 0.959272
state 0.973826 | 0.973814 | 0.973798 | 0.973814
type 0.945832 | 0.944729 | 0.945073 | 0.944729

Tab. 3: The performance of the chosen type and state classifier on the validation set. The precision, recall and

f-score are calculated by taking the sample weighted mean over all the respective classes.

the DriveUC test set obtaining the results in tab. 4. The results for every class individually can be found
in tab. 16 in the appendix under sec. B. The results listed there are the ones for the combined classifier,
including the relevance as well, however, with the type and state classifier working unchanged, they are

the same as the ones obtained from this testing. We notice that besides the arrow-straight-left class,

Category | Precision | Recall F-Score | Accuracy
total 0.907654 | 0.906522 | 0.906535 | 0.906522
state 0.940041 | 0.939172 | 0.939251 | 0.939172
type 0.875266 | 0.873871 | 0.873818 | 0.873871

Tab. 4: The performance of the chosen type and state classifier on the validation set. The precision, recall and

f-score are calculated by taking the sample weighted mean over all the respective classes.

which only containing 42 training samples and 8 test samples, while also being quite similar to the arrow
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Fig. 10: The scores for the stagewise training of the type and state classifier. We plotted the accuracy and the

loss for all classes together, and recall and precision for every class individually.

straight and arrow left class, the classifier performs quite well with an overall sample weighted f-score of

0.9065.

5.2 RELEVANCE CLASSIFICATION

5.2.1 ANALYSING THE DATA

The data we want to give to our relevance classifier looks as follows:
d; = (z;, yi, width;, height;, depth;, state;, type;), i € [0,n]. (5.15)

The given feature vector is build from the i** sample in a dataset of a total of n samples with the values
of x;, y;, width;, height; given in pixels, while the depth; is given in meters. z;, y; define the centre of
the bounding box rectangle and the type and state are one-hot-encoded.

The reason for the choice of units is that we later want to use our developed model on Cityscapes. As
discussed in sec. 4 the images of both datasets are similar concerning the relative point of view and image

measures. However, the disparity does not match, since the focal length (f) of the cameras and their
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baseline (B, i.e. distance of the objectives) are different in both cases. Hence, we can not use the raw

disparity data but have to calculate the depth. This is done by using the formula:

[-B

depth = ———.
P disparity

(5.16)
Due to the accuracy of the depth information, it seems quite reasonable to assign only a depth scalar to
a traffic light. Even with a higher depth resolution the use of more then a scalar for the distance should
have no significant impact, concerning that information about the relevance feature is more likely to be
encoded on a scale of meters and not on the scale of the housing parts of a traffic light.

The idea behind obtaining this scalar is straight forward, as we just calculate the median disparity in the
bounding box of a sample and then use eq. 5.16 to obtain the depth. We do not use the mean, since it is
more vulnerable to noisy data compared to the median, as we have already seen in sec. 4.3 with fig. 23.
In fig. 11 the continuous features of eq. 5.15 are visualised on the complete DriveUC dataset. We do
realise some structure in the data, proving our intuition right. We would intuitively believe, that relevant
traffic lights are more likely to be closer to the car and have therefore not only a smaller depth but also
appear bigger in the pictures (i.e. greater width and height). For the depth of the irrelevant class, we
would expect a long tail in the distribution since irrelevant traffic lights can practically appear at every
distance while the relevant distribution should not have this tale. We also would expect the traffic lights
at every z-position in the picture, however, there should not be any at the lower y-positions since traffic
lights are positioned at heights of above three meters.

Although the data is consistent with our expectations, the task of classifying it appears to be a hard one.
This is because the marginal distributions do heavily overlap as one can see in fig. 11. With this being
the case we certainly have to utilise models that learn joint distributions of the data to obtain a reason-
able result. Since we do not want to invest much work in the pre-processing of the data we go with a

neural network, as it can learn arbitrary decision boundaries and is not limited to certain shapes for them.

5.2.2 THE MODEL

For this classification task, we use a simple feed-forward neural network as described in sec. 2.2.2 with
ReLU as activation function after each layer (except the output layer) and dropout as well as batch
normalisation before each hidden layer. Since we are dealing with a binary classification task (i.e. rele-
vant /not relevant) we decide for only one output and therefor equip the classification layer with a sigmoid
function.

As we also want to explore different hidden layer configurations we define two hyperparameters that
finalise the architecture of our model, namely depth and maximum width.

The maximum width is motivated by research that shows, that it is better to have deeper and rather
narrow instead of shallow networks if the goal is to learn feature spaces of advanced complexity [50], [51].

From this hyperparameters we obtain our layer configuration by setting the output layer to size one and
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Fig. 11: Visualisation of the continuous features from DriveUC. (a) shows the x;- and y;-position of the traffic
lights as a scatter plot, whereby the y-axis starts at 500 px. (b) shows the depth of the samples in meters, and
(c) and (d) show the width and height in pixels respectively. In the histograms some outlier samples are

neglected for visualisation.

the input layer to size fifteen”. In between, we start to add layers moving backwards from the output
increasing the layer size by two in each step until we reach the maximum width or the maximum depth.
If we reach the maximum width before the maximum depth we start to successively add layers, with
the same size as already existing layers (excluding the input and the output layer) and group layers of
alike size. This successive procedure starts by adding another layer of the same size to the first group of
hidden layers and then do the same for the next group and so on, moving towards the output layer until
we reach the wanted depth. We keep the maximum width fixed with 64 and only vary the depth. As an

example we want to give the layer configuration of a network with a depth of ten:

layer sizes = (15, 64, 64, 32, 32, 16, 16, 8, 4, 2, 1). (5.17)

Finally, before passing the data into the model we normalise the x;, y;, depth;, width; and height; to mean

zero and standard deviation one so they are all on similar ranges.

"The input is fixed by the size of our feature vector (i.e. fifteen) and the output is fixed by the number of our classes

(i-e. one).
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5.2.3 EXPERIMENTS

We again use the Adam optimisation algorithm with the same values for the decay rates and the numerical
stability value as in sec. 5.1.4. We do also stick with the cross-entropy as the loss function (in this case the
binary cross-entropy). This means we have to find the depth of the network, the drop rate, the learning
rate and the weight decay. Although the model is far smaller than the model in sec. 5.1 the number of
hyperparameters, on the other hand, grew bigger. Therefore we still favour our random search followed
by a path search (alg. 1) over the grid search and also use early stopping (alg. 2) again.

As ranges for the random search we use:

depth = {n | n € [6,16]}, (5.18)

drop rate = {0, 0.1, 0.2, 0.3, 0.4, 0.5}, (5.19)
learning rate = {10™" | n € [0, 5]}, (5.20)
weight decay = {107" | n € [0, 5]}, (5.21)

and sample twenty configurations uniformly from these ranges. For the random as well as the path search
we use the complete DriveUC train set with a train, validation ratio of 0.9 and a batch size of 512. The
early stopping interval remains at fifty and the mean filter at size five, the maximum number of trained
epochs is 500 and we wait for ten epochs before we start checking the early stopping condition. When
finished we chose the best performing model based on the validation loss and start a path search which

uses:

P ={-1,0,1} x {—0.1,0,0.1} x {0.1,1,10} x {0.1,1,10}\{(0,0,1,1))} (5.22)

as alteration schemes, trying to minimise the validation loss. Here the depth and the drop rate are shifted
while the learning rate and weight decay are scaled. Note that the early stopping and the epoch threshold
are applied to the path search as well, and that we discard search branches with invalid values for the
drop rate (e.g. drop rate = —0.1).

When the search is finished, we chose the optimal hyperparameters based on the validation loss and
f-score and train a new model for 1.000 epochs with these parameters on the DriveUC train set, using 10
% of the data for validation. When the learning is finished we chose the best performing model, regarding

the f-score, test it on the DriveUC test set and then use it in our combined classifier.

5.2.4 RESULTS

The results of the random path search are listed in tab. 15 under sec. B of the appendix. We notice that
the optimal validation loss and the optimal validation f-score is not produced by the same model and we,

therefore, use the approach that we also used in sec. 5.1, namely selecting the model that performs best
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in one category, and ranks high in the other. The model with the configuration:

depth = 17,

drop rate = 0.0,

learning rate = 1 x 1073,

weight decay = 1 x 107°
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ranks first, regarding the f-score and third in the loss category. The contending leader in the loss category

only ranks eighth in the f-score ranking, hence, we chose the first model for further training.

In fig. 12 we plotted the course of training for the relevance classifier with the selected hyperparameters.

The training progress saturates at about 200 epochs already, with the optimal f-score being reached in

epoch 145.

We select the model with this optimal f-score and test it on the DriveUC test set containing 245.003
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Fig. 12: The f-score, accuracy, precision and recall scores in the course of the relevance classifier training. The

batch size was set to 512 and we trained for 1.000 epochs. The highest validation f-score of the model is reached

in epoch 145. On the right-hand side we plotted the overall loss and accuracy and the precision and recall for

the relevance class.

samples. The results for the validation and test set are summarised in tab. 5. We report an f-score of

Set Precision | Recall | F-score | Accuracy
validation | 0.8059 | 0.9137 | 0.8564 0.8690
test 0.7849 | 0.8996 | 0.8383 0.8583

Tab. 5: The scores on the validation and test set for the model with the best f-score on the validation set.

0.8383 and a accuracy of 0.8583 on the DriveUC test set. For a binary classification task this is not great,

however with 58.57 % irrelevant and 41.43 % relevant in all of DriveUC (tab. 14) the classifier is better

than the classifier, which always selects the dominant class in the dataset. The reason for this rather low

accuracy is probably the similarity of the relevant and irrelevant class in the features we used (fig. 11),
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making it difficult for the network to give accurate predictions.
In this context it is also interesting to evaluate the networks calibration, meaning how accurate the
probabilities given by the network actually are. Following the procedure described in [52] we obtain

the plots in fig. 13. From the diagram, we can see that the network is calibrated quite well, as the

10889
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14200
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17180
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Fig. 13: The calibration of the selected relevance classifier on the DriveUC test set. We wrote the number of

samples contained above the respective bin.

accuracy vs. confidence line follows, with few abbreviations, the ideal calibration. We notice, however,
that especially at higher confidence/accuracy levels, on the right-hand side of the diagram, there is a
larger discrepancy between the model’s accuracy and its believes about its accuracy. This can be useful

later when discarding samples that the classifier is uncertain about (sec. 7).

5.3 COMBINED CLASSIFICATION

At last, we now want to study the performance of the classification pipeline build from the combination
of the type and state as well as the relevance classifier. In this pipeline the input to the type and state
classifier is still an image crop, however, the type and state part of the relevance classifications feature
vector eq. 5.15 is now produced by the type and state classifier. We test this pipeline on the DriveUC
test set, however, excluding traffic lights below a width of three, similar to sec. 5.1. For the rest of this
section (sec. 5.3), when we talk about the DriveUC test set, we mean this reduced dataset. The results
for the different categories is listed in tab. 6, and the results for the individual labels is listed in tab. 16
under sec. B in the appendix.

Analysing the results we notice several things. First of all the type and state classification is quite
accurate with and f-score of 0.94 for the state and 0.88 for the type. Only the ”arrow straight left” label
falls out of line, which is however not that surprising, as the whole DriveUC dataset only contains 50
(42 in the train and validation set and 8 in the test set) samples of this class, and the natural tilting of
objects in images as well as our rotation in the pre-processing might cause further confusion with the

7arrow straight” and ”arrow left” labels.
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Categorie | Precision | Recall F-Score | Accuracy

total 0.806622 | 0.709324 | 0.742335 | 0.814600
state 0.940429 | 0.939573 | 0.939647 | 0.939573
type 0.876595 | 0.875239 | 0.875163 | 0.875239
relevance | 0.602843 | 0.313159 | 0.412195 | 0.628988

Tab. 6: The results on the three categories of the combined classification on the reduced DriveUC test set.
Here we calculated the precision, recall and f-score by taking the sample weighted mean over all the respective

classes. The total number of samples in the reduced DriveUC test set is 240.604.

The second matter that is notable is the rapid decrease in accuracy and f-score classifying the relevance,
comparing the isolated model tab. 5 to our combined classifier. This means that the relevance classifier
is quite reliant on the type and state feature, being lesser of a surprise as the type feature also contains
information about the group of traffic participants the traffic light is designated for. Regarding this
information, one can already exclude pedestrian and cyclist traffic lights, as they are not relevant for the
vehicle. The relationship of the type and relevance, is however not linear, as tab. 7, proves. If it would
be a linear relationship, we would expect a positive correlation coefficient, of some greater value, with

the coefficients calculated with:

accxy — accxaccy

V/(acex — acck)(acey — accZ)’

Corr(X,Y) = (5.27)

where accx/y denotes the accuracy of either the X or Y categories and accxy is the mutual accuracy,

where a sample is only classified correct if both, the X and Y classifications are correct.

X and Y Counts: X and Y correct | Counts: X and Y incorrect | Corr(X,Y)
state and type 199679 3632 0.095969
state and relevance 140134 3336 -0.074315
type and relevance 127783 6464 -0.121669

Tab. 7: The correlation between the different categories calculated with the results of the DriveUC test run

and eq. 5.27.
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PANOPTIC SEGMENTATION

In this section we shortly introduce the panoptic-segmentation pipeline called Panoptic-DeepLab [53],
with an modified HRNet-w48 backbone [54]. This pipeline ranks number four on the panoptic-segmentation
task on Cityscapes and is the only work providing an openly accessible, pre-trained PyTorch implemen-
tation among the best-ranked contenders [55]. A panoptic-segmentation, as proposed in [56], means that
the pixel-level semantic segmentation is supplemented by an instance segmentation. This allows us not
only to localise point clouds in the image, and their semantic class but also differentiate between two
instances that are of the same semantic class. Now with an alike segmentation, we know about the pres-
ence as well as the location of individual pedestrians and traffic lights in the image, as well as the surfaces
that are road or other ground terrains. Together this is all substantial information for the identification
and analysis of pedestrian crossings, and since Cityscapes test, train-extra and the DriveU dataset, do
not come equipped with a semantic, or instance segmentation we have to obtain them by utilising the
pipeline described in this chapter.

For our purposes, the representation of the outputs is, however, not quite fitting, so following the intro-
duction of the Panoptic-DeepLab pipeline we discuss some postprocessing steps, to get from a panoptic-
segmentation to a polygon representation of the contained things and stuff® in the image. At the end of
this chapter, we discuss the results of the algorithm and the postprocessing on the Cityscapes extra and

test, as well as the DriveU dataset.

6.1 INTRODUCING PANOPTIC-DEEPLAB WITH THE HRNET+ BACKBONE

The Panoptic-DeepLab pipeline is built, following a so-called bottom-up structure. This means the
pipeline first performs an instance segmentation, which is then followed by the grouping of thing pixels
into clusters.

Instead of using the vanilla backbone of Wang et al. [54] for their implementation, Cheng et al. [53] kept

Fig. 14: The HRNet+, proposed in [53],

with the kept classification head and the

attached ASPP module. The graphic is

taken from [53].

the classification head of the HRNet structure after pretraining on ImageNet [36] and also replaced the
final average pooling operation and the linear layer with an ASPP module. This setup, called HRNet+,

8Things and stuff are commonly used terms in panoptic-segmentation, with a thing being everything that is countable
(e.g. person, tree, car, etc.) and stuff is understood as amorphous region of similar material and/or texture (e.g. road,

grass, sidewalk).
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Fig. 15: The Panoptic-Deeplab model. The depicted model is slightly different from the model with the
HRNet+ backbone. First of all the encoder and the context modules is replaced with the HRNet+ structure
depicted in fig. 14. And seconde, being a result of the different encoder, the produced feature maps of stride 32
have to be adjusted, by adding one more encoder feature map of stride 16 to the decoder, first projecting its
channels to 96. From there on the structure of the model follows the depicted scheme with an atrous pooling,
the Atrous Spatial Pyramid Pooling (ASPP) and a light-weight decoder, upsampling the sizes of the feature
maps, performing one convolution in every stage. Obtaining the instance segmentation is done by predicting the
instance centres and regressing every foreground pixel (i.e. pixel of a thing class) to their corresponding centre.
In the end, the predicted semantic segmentation and class-agnostic instance segmentation are then fused to

generate the final panoptic-segmentation using a ”majority vote”. The graphic stems from [53].

is then linked to the decoder of the model, depicted in fig. 15. The implementation and pre-trained model
that we use can be found at [57], and is indeed a reimplementation of the model described in [53], which
is done by the authors of the original papers themselves, however. Another difference between the model
provided and the top-ranking model is the additional training data that was used for the latter one.

Now as the last point concerning the Panoptic-Deeplab model, we briefly want to discuss preprocessing.
Panoptic-DeepLab was trained and tested only normalising the input to the mean and standard deviation
of the respective dataset (i.e. Cityscapes train) and we also stick with this procedure. Hence, also the
images of DriveU are fed into the pipeline with no further preprocessing but the normalisation, in this

case not to the mean, and standard deviation of Cityscapes but of DriveU.

6.2 THE POSTPROCESSING

For the analysis, we conduct in sec. 7, the raw outputs of the panoptic-segmentation are not quite fitting.
This is because the outputs come as a 2048 x1024 map, assigning every pixel either only a stuff class or
a thing class as well as a thing id. Those maps are not only quite memory-intensive and therefore slow
to work on, but also do not allow for the easy extraction of properties like neighbourhood and overlap of
thing and stuff. Another problem drastically slowing down calculations, when using this point clouds, is

the mapping of instances from the image space to the disparity space, needed to make depth estimations
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of for example pedestrians and traffic lights in the images. For Cityscapes, this transformation is not
necessary since the disparity data already comes in image coordinates, but for DriveU this is a major
performance issue. To account for our needs and to facilitate performance, we add another post-processing
step to the Panoptic-DeepLab pipeline.

First of all, we cut out the area in the image associated with the car, the camera is placed in, since

there is arbitrary and highly miss leading segmentation happening in this domain (see fig. 16). Then,

(2) (b)

Fig. 16: The image on the left-hand side shows the panoptic-segmentation without a car mask, and on the
right-hand side, the car mask is applied. The misclassifications in the domain associated with the car, are quite

obvious (a).

instead of using the plain output arrays containing the panoptic-segmentation, we transform these arrays
into a polygon representation of all things and the stuff instances. For the things, we could implement
this by just taking the convex-hull enclosing the point cloud of the instance. However, with the stuff,
we can not just follow this procedure, since point clouds representing the same stuff are assigned the
same class, although they might be separated from each other. This makes perfect sense in the panoptic-
segmentation, with stuff describing amorphous regions a human would assign the same meaning to (e.g.
road, being something vehicles drive on), however, when taking the convex hull of the stuff, we would
drastically extend their domains, with for example sidewalk polygons being closed across streets and
similar unwanted side effects. To solve this problem we use the edge-filtering and the DBSCAN clustering
algorithm [58] on the stuff in the images to separate stuff point clouds within a class, thus when closed
by the convex-hull, we have two sidewalk instances with a road in between and not one sidewalk polygon
being closed over the road. For outlier elimination and computational convenience, we also use this
practice with thing instances in the image. The applied kernel is the simple 3x3 edge detection kernel
and for the DBSCAN algorithm we set the distance to 2.5 and the number of neighbours to four?. A
sketch of the process is drawn in fig. 18 and an example of an application of the algorithm is shown
in fig. 17. The polygon representation also allows for an additional form of error correction, as we can
threshold the surface area of a thing or stuff polygon to be accepted. By this, we can reduce the number
of fragment defections that are spread over some panoptic-segmentations, predominantly in samples of

DriveU. As threshold value we choose 400 px?.

9We use the skikit-learn implementation of DBSCAN [11]
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(a) (b)

Fig. 17: The input to the algorithm is the panoptic-segmentation of fig. 16 (b). On the left-hand side, only the
convex hull is formed, while on the right-hand side we applied the edge filtering and the DBSCAN algorithm as
well as thresholding the minimum allowed area. In both cases we used the plain panoptic-segmentation for
classes that are of no interest for the later analysis of pedestrian crossings (sec. 7), e.g. sky, vegetation and
buildings. One can see the problems, if DBSCAN is not applied, with instances leaking over other instances and

outliers, drastically enlarging instances when the convex hull is formed (a).

‘ Edge-Filter @ DBSCAN @
— —

Fig. 18: The postprocessing pipeline for the panoptic-segmentation. The panoptic-segmentation is at first edge
filtered, drastically reducing the points in a cloud, only leaving the enclosing points of an instance (may it be a
thing or stuff). Then the DBSCAN algorithm is applied to all the different thing and stuff instances in the
image to separate instances of the same class that have a margin in between them. After the DBSCAN

algorithm, we extract the convex hull from the points, being our polygon for further analysis.

6.3 RESULTS

The performance of the Panoptic-DeepLab pipeline with the HRNet+ backbone, on Cityscapes'?, re-

ported by Cheng et al. in [57], is summarised in tab. 8. We can not evaluate the model on either the

Tab. 8: The performance of the used
Panoptic-DeepLab model on Cityscapes, PQ SQ | RQ AP mloU

reported in [57]. The explanation of the
63.4 | 81.5 | 76.7 | 29.9/29.6 | 80.9

metrices can be found in [56].

DriveU nor the train-extra and test set of Cityscapes by comparing it to ground truth, as all of this
datasets do not come equipped with a panoptic-segmentation, which is indeed the reason we deploy this
model in the first place. However, what we can do is to look at a subset of the produced segmentations,

and perform a qualitative evaluation of the results. Such a sample is shown in fig. 19. We can see that

10They do give no further specification about the subset the model is tested on, thus we suspect it to be the whole dataset

(except the test set, as it is not publicly accessible).
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the produced instance segmentations are descent and fit the human estimation for the stuff and thing in-
stances quite well. Errors in the form of small fragmented pixels are often corrected in the postprocessing
step, with, however, the problem, that correct instances that are at a huge distances get excluded as well
(e.g. sec. 7 (a), second row). Another error appears threw the convex hull operation that still sometimes
drastically enlarges instances, especially poles of traffic lights and signs (see fig. 17 (b))

The segmentation produced for DriveU samples is rather good, considering that the only preprocessing
step is normalisation, with the classification making the same errors as on Cityscapes samples, and some

additional classification errors on very bright and dark domains (e.g. sec. 7 (b), fourth row).

(a) Samples drawn from the Cityscapes train-extra and (b) Samples drawn from DriveU.

test set.

Fig. 19: Examples of the panoptic-segmentation produced by the Panoptic-DeepLab model and our
postprocessing. On the left is the original image, in the middle the panoptic-segmentation in its raw
representation and on the right our polygon representation, for the stuff and things of interest, mixed with the

raw panoptic-segmentation, for the leftover classes.
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7 PARSING THE DATASETS

The goal of this section is to construct a procedure that allows for the identification and evaluation of
pedestrian crossings contained in the Cityscapes and DriveU datasets by utilising the models we developed
and discussed in sec. 5 and sec. 6, as well as the ground truth and the depth of the samples. With an
algorithm based on this procedure, we then produce a dataset of the identified pedestrian crossings,
containing the state of the respective traffic lights and information about the presence of pedestrians on

the street, together with the results leading to that identification and the pedestrian localisation.

7.1 PEDESTRIAN CROSSING IDENTIFICATION

Having the pedestrian crossings managed by a traffic light (PC) and being observed from the viewpoint
of a vehicle, we are confronted with numerous configurations of which only a subset can be identified and
analysed with the means of the data and the tools accessible to us. However, one of the most common
configurations!! of a PC can be selected rather accurate with our tools and hence is chosen as the object
of our analysis. This PC is built from two vehicle-traffic lights appearing in a conglomerate with the
respective pedestrian-traffic lights, on the left- and on the right-hand side of the street the observing
vehicle is moving on. The traffic lights are located roughly three to four meters above ground and can
appear together with several more, above the street or attached to one of the original lights, with all of
letter, however, having neglectable importance for the identification and analysis of the PC.

Our identification of a pedestrian crossing will be limited solely to information (state, type, relevance,
position, measures, depth) related to the traffic lights in the image. This makes the selection rather easy,
but also vulnerable to systematic errors as we will see later. However, a more advanced study also relying
on contextual and semantic information (of for example the road, sidewalks and poles) is beyond the
scope of this thesis.

Even though we limited ourselves to a rather simple configuration we have to make a distinction that is
not related to the PC itself but to its observability in the (image) data and leaves us with two different
scenarios. In the first case, the vehicle (and therefore also the camera) is in a distance of the PC and
the image contains the full setup described above. Whereas in the second scenario the vehicle is quite
close to the PC and only one of the two traffic lights is visible in the image. Now in the first case, the
state of the traffic lights on both sides should be the same while their type can differ (one of the traffic
lights could, for example, have a circular-shaped light bulb while the other one has an arrow pictogram
on it). As for the first case we do not demand that the traffic lights are relevant as the pair can be at a
further distance and therefore not affecting the immediate path of the vehicle. Nonetheless, the relevance

of both traffic lights should match (we loosen this condition for Cityscapes, due to the uncertainty in

11 This conception is solely based on the experience of the author being a member of traffic and looking at the used

datasets.
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the relevance feature). In contrast to that, the single traffic light is expected to be quite close and hence
should be relevant as it is immediately important for the planned path of the vehicle. For the first and
also for the second case, the traffic lights should be located in the upper right (first traffic light) and
upper left (second traffic light) domains of the image while also being below a certain distance to the
car. With the distance threshold, we make sure that the pedestrian crossing is still visible and can be
analysed with our means. The problem with the increasing distance of PCs is the decreasing accuracy in
depth-estimation and classification (for the traffic lights in Cityscapes and the instance segmentation in
DriveU), while also the likelihood of occlusion by vehicles and other obstacles increases. A list of criteria,
as well as a scheme of the two scenarios, is shown in tab. 9.

One notices that we excluded a rather decisive criterion from the selection process being the presence of a
pedestrian traffic light next to the vehicle traffic light. Hence, we no longer can distinguish between a PC
and a crossroad where the traffic lights only manage vehicle traffic and no pedestrian crossing is present.
The reason for this is quite simple and related to the labelling policies of the datasets. In DriveU the
vehicle traffic lights are labelled with a quite high standard and almost none is left out from the labelling
process, while with the pedestrian traffic lights the situation is different. They are often not annotated
and labelled, especially if they appear sideways and in a conglomerate with a vehicle traffic light (see for
example the pedestrian crossing in fig. 3). In Cityscapes the situation is different but no less problematic.
As we already mentioned in sec. 4.3 traffic lights that are mounted on the same pole are often labelled as
one instance and we, therefore, can not distinguish between vehicle and pedestrian traffic lights (see for
example the traffic lights on the right- and left-hand side in fig. 4). Hence both datasets do not provide
a level of accuracy and/or completeness in their data to include this feature into the selection.

From the abstract conditions we previously formulated, we now want to develop an exact procedure for
both datasets, that for a given sample (traffic lights in an image, with their class, i.e. type, state and
relevance, their position, measures and their depth), decides if a pedestrian crossing is present and returns

the traffic lights managing it.

7.1.1 ACQUISITION OF THE TRAFFIC LIGHT DATA

First, we need to obtain the data based on which we want to make our evaluation. Thus for a given
sample (i.e. image and ground truth) of Cityscapes or DriveU, we acquire the following measures for

every traffic light recognised.

Depth: As in sec. 5.2 we only assign a depth scalar to a traffic light. This scalar is obtain by calculating
the median of the disparity values enclosed either by the bounding box (DriveU) or panoptic-segmentation

polygon (Cityscapes) of the respective traffic light and then use the formula in eq. 5.16 to get the depth.

Position and Measures: By position and measures we mean the pixel position of the centre of the bounding
box rectangle, as well as the width and height of the bounding box. With DriveU we can just use the
ground truth while for Cityscapes we calculate the bounding box as the minimum rectangle enclosing the

traffic light polygon of the panoptic-segmentation.
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Scenario 1

Q00
000

Scenario 2

A4

—_— == 0/ — — —= —

Description:

The pedestrian crossing is at a dis-
tance and both traffic lights are visi-

ble in the image.

The pedestrian crossing is close to the
car (and the camera), thus only one

traffic light is visible in the image.

First traffic light
(FTL)

- The FTL is below a certain dis-
tance to the car (depth threshold).

- The FTL is a vehicle traffic light.

- The FTL appears on the right-

hand side of the image centre.

- The FTL appears above the centre

of the image.

- The FTL is below a certain dis-
tance to the car (depth threshold).

- The FTL is a relevant vehicle traf-
fic light.

- It appears on the right-hand side of
the image centre (we exclude single
traffic lights on the left to reduce

the error rate).

- The FTL appears above the centre

of the image.

- It is the closest traffic light that

satisfies the named conditions.

Second traffic light
(STL)

Tab. 9: Criteria for the identification of a traffic light controlled pedestrian crossings from positional, type,

- The STL is at roughly the same
depth as the FTL (depth abbrevi-

ation threshold).

- It is a vehicle traffic light in the
same state as the FTL.

- The STL appears on the left-hand

side of the image centre.

- The STL appears at roughly the
same height as the FTL.

- It forms, together with the FTL,
the closest pair that satisfies the

named conditions.

state and relevance information of the traffic lights.




Class: For DriveU the ground truth provides us with information about the state, type and relevance of
the traffic light. For Cityscapes the situation is different, as this dataset does not come with class labels
for the traffic lights. Hence we need to deploy our model developed in sec. 5.

We crop the image of the traffic light according to the minimum enclosing bounding box, resize and
normalise it and pass it together with the normalised'? position, measure and depth information into our
traffic light classifier, which then estimates the type, state and relevance. Since we can not rely on perfect
classification we discard traffic lights, that our classifier is not perfectly certain about. Namely the ones
that fall below a confidence level of 0.96 for the state subclass and 0.9 for the type class. This high levels
might seem rigorous but studies have shown that neural networks, especially CNNs are not very well
calibrated and often overconfident with their prediction [52], an effect that is certainly not mitigated but

rather worsened when transferring such models between datasets.
7.1.2 SETUP

The (preselected) traffic lights in a sample are parsed in ascending order regarding their depth feature.

If the selected traffic lights exceed the overall depth threshold:
dprivet = 100 m, dJityseapes — 150 m, (7.1)

is not a vehicle traffic light, is below the image centre or its bounding box centre is not positioned in
the left half of the image, it is discarded. We already named the reason for using the depth threshold,
being the decrease in accuracy of our depth information and also the precision of the class labels we
acquire by the panoptic-segmentation and traffic light classification algorithm. The decrease of accuracy
happens due to the simple fact that with increasing distance the number of pixels associated with an
object (traffic light, person, car, etc.) decreases and by this also our (and the algorithms) certainty about
the object’s properties and class. Especially the panoptic-segmentation needs to be quite accurate as our
pedestrian localisation is based slolely on it. Therefore, we use a harsher depth threshold with DriveU
since for DriveU the instance segmentation is done by the algorithm from sec. 6, which was only trained
on Cityscapes, and we suspect a higher error rate when transferring the model between datasets.

Now if the traffic light does not fail the selection based on state and type we check if there exists a sibling
traffic light fulfilling the conditions:

1. The sibling is roughly at the same depth as the first traffic light, with an abbreviation between the
depth of the traffic lights allowed being

dabbr =8m (72)
at max.

2. The sibling is at roughly the same height, meaning that the traffic light bounding boxes overlap

along the y-direction.

12The normalisation for the crops, as well as the position, measure and depth are done with a mean and standard deviation

calculated from all samples in the Cityscapes train set. For the image crops we normalise every colour channel individually.

44



3. The siblings bounding box centre is located in the left half of the image.
4. The sibling has the same state as the first traffic light and for DriveU also the same relevance label.

The reason that we do not use the relevance feature as a criterion, matching traffic lights in Cityscapes,
is the weak prediction ability of our relevance classifier (sec. 5.3), in contrast to DriveU where we have
access to hand labelled ground truth, that should not contain a significant amount of errors.

If a traffic light pair is found the parsing of the sample is finished and the sample gets assigned a pedestrian
crossing managed by the found pair of traffic lights. If no sibling is found in all traffic lights in the sample
the selected traffic light is checked for the possibility of being a single traffic light. This means, for both

datasets, the traffic light must be below the threshold:
dsingle =30 m (73)

and be relevant. If it satisfies the conditions the according sample gets assigned a pedestrian crossing
managed by the single traffic light. If it does not the traffic light gets discarded.

For the case of all traffic lights of a sample being parsed while no pedestrian crossing is found the sample
gets an empty label. Using this procedure we obtain the closest PC in the image in the form of two or
one traffic light and discard all the other possibly present ones. All the threshold values were intuitively
initialised analysing, for example fig. 11. We then successively adjusted them, evaluating several results

in every step.

7.2 PEDESTRIAN LOCALISATION

Now that we extracted prospective pedestrian crossings in the form of a single or sibling traffic lights
from the datasets, we have to localise the pedestrians in the scene and develop criteria to decide if they
are on the PC or not.

We do decide if a pedestrian is on the PC or not based on the two conditions:
1. The pedestrian should be inside a three-dimensional bounding box enclosing the pedestrian crossing.

2. The pedestrian should be on the road.
7.2.1 FIRST CONDITION

To check the first condition we use the location (depth and a- and y-pixel-positions) of the traffic light(s)
to make up this PC cuboid. However, due to the two scenarios in sec. 7.1 and only limited information
in the second case, we have to make a distinction.

If we have access to both traffic lights of the PC we can create the boarders in depth, - and y-pixel-
position based on the two traffic lights. First we check if the pedestrian (i.e. its bounding box centre'?)
is inside a two dimensional area spanning from (xg, min{yo,y1}) to (z1,b). In this context zg and z;
are the rightmost or leftmost z-pixel-positions and yo and y; are the mean y-pixel-positions of the left or

right traffic light respectively. b denotes the y-coordinate of the bottom of the image, in our case 1024.

13Bounding boxes are again created by enclosing the samples panoptic-segmentation with the smallest rectangle possible.

45



Second, we demand that the pedestrian is at roughly the same depth as the two traffic lights. We check
the depth by using the depth scalars of the traffic lights, calculated in the previous section and create an
z-dependent depth margin. The depth margin is defined utilising the linear function:

dx)=a-z+0b, (7.4)
with:
.l ) (7.5)
1 — 2o
b:do—a'.’bo, (76)

and the depth margin parameter d,,,. If the pedestrian, with its mean bounding box position (z,,y,) and
its depth d,, calculated by taking the median over the values enclosed by the the pedestrians polygon in
the depth map, satisfies:

d(xp) — dm < dp < d(xp) + dip, (7.7)

we assume that the pedestrian is at the traffic lights depth. We visualised the approach in fig. 20.

For the second scenario we are missing the information about a second traffic light, hence we must make

do dy

(b)

(2)

Fig. 20: Pedestrian localisation with both traffic lights being observed. (a) shows the valid area for pedestrians
to be considered on the crosswalk regarding the z- and y-image-dimensions. The yo, y1 are the centre positions
of the traffic light bounding boxes in the y-direction, zo and x; are the rightmost or leftmost coordinate of the
traffic lights respectively. (b) visualises the depth margins for the pedestrians to be considered on the crosswalk.

do and d; are the depths of the traffic lights.

some assumptions and loosen our criteria. With only one traffic light present and suspecting another
one beyond the left margin of the image we demand that the pedestrian (i.e. its bounding box centre)
is located inside the area spanned by (0, y1) and (z1, b), with y; being the mean y-pixel-position and
the x; leftmost z-pixel-position of the bounding box enclosing the visible traffic light. Again b is the
y-coordinate of the bottom image boarder, in our case 1024.

Now, we also again want the pedestrian to be at roughly the same depth as the recognised traffic light,

however, missing the traffic light on the left, the creation of a function like eq. 7.4 is not possible. What
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we do instead, is defining a new hyperparameter a,, called margin growth and the functions:

A4 (@) = a7+ bs, (7.8)
d_(z) = —am -z +b_ (7.9)
with:
b+ = d1 — Qm, * L1, (710)
b_=dy+am,-x1. (7.11)
If the pedestrian satisfies:
d_(zp) —dm < dp, < dy(zp) +dn (7.12)

we assume that the pedestrian is at the traffic lights depth. The depth trapezoid margine is used, due to
the traffic light sibling possibly being shifted towards or away from the camera compared to its observed
counterpart. This shifting might be caused by the tilting of the road and the position of the car so we
use the margin growth to compansate for that. We visualised the practice in fig. 21.

Now if a pedestrian meets the properties for the respective scenario in the sample, described above, we

(b)
(2)

Fig. 21: Pedestrian localisation with one traffic lights being observed. (a) shows the valid area for pedestrians
to be considered on the crosswalk regarding the xz- and y-image-dimensions. The y; is the centre positions of the
traffic light bounding boxes in the y-direction, while x; is the leftmost coordinate of the observed traffic light.
(b) visualises the depth margins for the pedestrians to be considered on the crosswalk, with di being the depth
of the TL. We marked the possibly tilted alternatives of the PC, which, with our resources, are not

distinguishable from a pedestrian crossing with a uniform depth.

consider condition one fulfilled.

7.2.2 SECOND CONDITION

To check the second condition we use our panoptic-segmentation, in particular our polygon representation
of pedestrians, vehicles and ground domains of DriveU and Cityscapes. Now if a pedestrian fulfils the
first condition we try to determine if his feet are on the road or not. This is done by first sorting the

polygon vertices descending in their y-magnitude and then select at least the n,,;, first points. If those
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points are colinear, we successively add further points, one at a time, until we obtain a list that is not
colinear anymore.

We then form the convex hull of the selected points, assuming this technique provides us with a polygon
enclosing the feet of the respective pedestrian.

Finally, we check if the obtained polygon intersects with a road polygon, and further if it intersects with
a polygon of a list of exclusive classes. If the feet polygon does indeed intersect with the road and with
no class from the exclusive list, we assume the pedestrian to be on the road, and hence the first condition

fullfilled, otherwise not.

7.2.3 SETUP

Checking the two conditions for valid pedestrian instances in a sample where a PC is recognised, allows
us to obtain an estimated count of pedestrians as well as their location on the PC.

Valid means that the pedestrian polygon has a surface area. Regarding Cityscapes, we demand that this
area is greater 0, while for DriveU we threshold the minimum area with 1000 px2. The high threshold
for DriveU is applied to reduce misclassifications, assumed to be more frequent in DriveU, due to the
transfer of the panoptic-segmentation model.

For both the DriveU and the Cityscapes dataset we use:

3

dm:4m, am:@m7

(7.13)

thus the depth margin, in the most extreme case, grows to 14 meters. The exclusive list, for both
datasets, contains the classes: sidewalk, parking, terrain, ground, car, truck, bus, motorcycle, caravan,
trailer, bicycle, traffic sign, fence and pole.

All the above parameters were again selected by a successive change of them observing the obtained results
in every step. After the selection we parse the DriveU and Cityscapes datasets identifying pedestrian
crossings and localising pedestrians. From the obtained and used information, we create datasets for

DriveU, Cityscapes train and the Cityscapes test and extra sets.
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RESULTS

In this chapter, we present and discuss the results obtain using the procedure developed in sec. 7 on the
DriveU and Cityscapes datasets and perform a false-positive error correction.

For DriveU we parsed 40.978 samples and our algorithm detected 17.953 pedestrian crossings. In the case
of Cityscapes, we parsed 3.475 samples in the trainset and found 423 pedestrian crossings and 21.522
samples in the test and train-extra set with 1.822 pedestrian crossing detections. Looking at the plain
results, i.e. the number of detections, one notices the discrepancy between the detection rate for DriveU
(about 0.44) compared to Cityscapes (about 0.09). This difference might be caused by two reasons. The
first reason is the creation of DriveU as a dataset containing traffic light controlled crossings, with the
camera only recording when approaching such a system [24]. Hence, if compared to Cityscapes, which
does not perform a selection of any specific urban- and suburban-scenes, the frequency of PCs in DriveU
should outnumber the one in Cityscapes. The second reason is the pedestrian crossing identification
being solely reliant on the information about the position, state, type and relevance of the traffic lights
in an image. For DriveU we have a ground truth, while for Cityscapes the types, state and relevance
information are obtained using our TL classifier producing a higher rate of missclassifications (tab. 17),
and therefore, probably also a decrease in detection rate.

The plain probabilities are listed in tab. 10. The variable P indicates the presence of pedestrians on the

crossing and the variable S the state of the managing traffic light(s).

Dataset | P(P=yes, S=red) | P(P=yes, S=red-yellow) | P(P=yes, S=yellow) | P(P=yes, S=green)
DriveU 0.014872 0.000167 0.000446 0.003732
Cityscapes train 0.101655 0.000000 0.002364 0.004728
Cityscapes train-extra, test 0.029089 0.000000 0.000549 0.004391
all 0.017972 0.000149 0.000495 0.003812

Dataset P(P=no, S=red) | P(P=no, S=red-yellow) | P(P=no, S=yellow) | P(P=no, S=green)
DriveU 0.235448 0.019551 0.034089 0.691695
Cityscapes train 0.411348 0.009456 0.014184 0.456265
Cityscapes train-extra, test 0.343578 0.010428 0.022503 0.589462
all 0.248886 0.018517 0.032627 0.677542

Tab. 10: The uncorrected joint probabilities, we obtained from parsing the datasets. The first random variable

states the presence of a pedestrian on the crossing and the second one the state of the traffic light.

8.1 ERROR CORRECTION

To correct for errors and get an estimate for the performance of our approach we conduct an error
correction. For every categories and the three sets, DriveU, Cityscapes train and Cityscapes train-extra
and test, we analyse up to 100 samples per configuration (i.e. pedestrian on the street or not, state of
the traffic light) to get an estimate for false-positive errors of our algorithm and correct the obtained

probabilities accordingly. We also examine the frequency of the error type, forming three categories:
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A segmentation error means that the primary error is cause by the segmentation of the sample, hence,
either the pedestrians in the image are not annotated accurate enough, or areas are classified as road,
although they are not (fig. 22a). Also if there are miss-detection of traffic lights, that classify areas as

traffic light with none present in the image, fall into that category.

A traffic light classification error is an error that is caused by a missclassification of the traffic lights in the
image. For example if our class prediction for a traffic light says green although the image shows clearly
a red traffic light. However, the category also contains wrong identifications of pedestrian crossings,
meaning that a crossing is detected although none present (fig. 22b). For those errors we decide if the
false detection could have been avoided, with a correct classification, and if so, the error falls in the traffic

light classification error category.

The localisation and identification error is an error which is caused not by the provided information, but
by our choices of how to identify a PC and localise pedestrians. Hence this category contains errors where
for example traffic lights above the street, instead of left and right of the street are selected (fig. 22¢) or
traffic lights that are not related to each other form, according to our identification scheme, a pedestrian
crossing (fig. 22d). Also assigned to this category is the miss localisation of pedestrians on the PC, where
there is no error in the segmentation, but the error is in the localisation procedure of the pedestrians
(fig. 22e).

The categories are mutually exclusive, hence if numerous errors are present, we try to identify the dom-
inant error, and assign the error according to our perception of the primary error. The counts for the

errors are summarised in tab. 17 under sec. B in the appendix. In tab. 11 we summarised the fraction

Dataset | Segmentation Error | TL Classification Error | Loc. and Ident. Error |  Segmentation | TL Labels

DriveU Panoptic-DeepLab ground truth

TL classifier

0 % 41 % 59 %
10 % 35 % 55 %

Citysapes train ground truth

Panoptic-DeepLab TL classifier

67 % 6 % 27 %

Cityscapes train-extra, test

Tab. 11: The composition of the errors made and the sources of the used data.

of errors made in each category and also added the data source of the segmentation and the traffic light
labels.

We notice that the segmentation error dominates for DriveU, being what we already expected with
the transfer of the Panoptic-DeepLab model from Cityscapes to DriveU samples. For Cityscapes train,
train-extra and test the fraction of localisation and identification error dominates, followed by the TL
classification error, caused by the TL classifier, we trained on DriveU and deployed on Cityscapes. On
DriveU we get an estimate of 18.26 % of the total false-positive error rate, on Cityscapes train it is 17.97
% and on Cityscapes train-extra and test 17.08 % leading to a total error rate of 17.87 %

Now, with our estimates of the false-positive error rates we can correct the probabilities in tab. 10, re-
ducing the number of samples in a category by the expected amount of false-positives in that category

(Tcateg.), obtained from tab. 17. Hence the new number of samples in a category is then:

nlcateg = (]- - Tcateg.) Ncateg- (81)
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(a) A segmentation error, with the road extending onto the sidewalk, leading to a pedestrian wrongfully located on the
PC. The blue scatter in the segmentation image indicates the points used to create the feet-polygon of the detected

pedestrian.

(c) A localisation and identification error. The traffic lights above the street are chosen and identified as PC.
L — * ~ --

(e) A localisation and identification error. The pedestrians are on the street and the PC is identified correct. However,

the pedestrians are not crossing the selected PC, but a road perpendicular.

Fig. 22: Samples for the different error categories.
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With the new counts in every category we recalculate the probabilities, which are summarised in tab. 12.

Finally those corrected results can be used to estimate the probability of a critical situation, i.e. the

Dataset | P(P=yes, S=red) | P(P=yes, S=red-yellow) | P(P=yes, S=yellow) | P(P=yes, S=green)
DriveU 0.014472 0.000058 0.000058 0.000408
Cityscapes train 0.119834 0.000000 0.002923 0.005846
Cityscapes train-extra, test 0.032743 0.000000 0.000000 0.001284
all 0.017857 0.000052 0.000105 0.000577

Dataset P(P=no, S=red) P(P=no, S=red-yellow) P(P=no, S=yellow) P(P=no, S=green)
DriveU 0.224189 0.018002 0.033529 0.709282
Cityscapes train 0.371252 0.011691 0.014614 0.473841
Cityscapes train-extra, test 0.301429 0.007704 0.022471 0.634369
all 0.233143 0.017047 0.032286 0.698933

Tab. 12: The corrected joint probabilities, we obtained from parsing the datasets.

traffic light is green and there are pedestrians on the street:

P(P=yes, S=green)
P(P=yes, S=green) + P(P=no, S=green)

P(P=yes | S=green) = (8.2)

The results are listed in tab. 13. We also attached the samples for the P=yes and S=green state and
depicted them in fig. 25 under sec. C.

P(P=yes | S=green)

DriveU 0.000575
Cityscapes train 0.012187
Cityscapes train-extra, test 0.002020
all 0.000825

Tab. 13: The conditional probability of a pedestrian on the street given the traffic light is green. The first
random variable states the presence of a pedestrian on the crossing and the second one the state of the traffic

light.
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Di1scussioN AND CONCLUSION

In this work, we examined the scenario of a pedestrian crossing managed by a traffic light, based on data
from urban- and suburban-scenes. To identify those PCs in the images of the DriveU and Cityscapes
dataset and extract information about the state of the managing TLs as well as the presence of pedestri-
ans, we, on the one hand, used the ground truth of the named datasets, and on the other hand, utilised
machine learning models to obtain the needed information from image data.

The traffic light classification model was trained on DriveUC train and then tested on DriveUC test,
achieving an overall sample weighted f-score of 0.7423 and 0.9397 in the state category. For the panoptic-
segmentation we modified the pre-trained Panoptic-DeepLab pipeline to fit our needs and examined some
result of the model and the engineered post-processing fig. 19 on DriveU and Cityscapes.

Finally, we formulated a set of rules incorporated in a procedure (i.e. an algorithm), to count the number
of pedestrian crossings in the dataset and extract the state information of the managing traffic light as
well as localising pedestrians on the PCs (sec. 7).

The overall false-positive error rate of the pedestrian crossing identification and the pedestrian locali-
sation (also including errors in the underlying data) is about 18 %, and after correction, we report the
probability for a critical situation (i.e. given a green traffic light, what is the likelihood for the presence
of pedestrians on the PC) with 0.0825 %.

The accuracy of this probability is, however, hard to evaluate, as we only have an estimate for the
false-positive errors and we do not know the false-negative error rates. If our algorithm had a uniform
false-negative error rate for all setups there would not be a problem, as for every setup the same ratio of
samples would be left out. Yet, such a scenario is highly unlikely, with the false-positive errors distributed
rather unequally (tab. 17) and the amount of information needed to decide for a setup, differing from
setup to setup. Thus, to classify an empty PC with the traffic light in a green state we only need a
correct traffic light localisation and prediction as well as rather accurate depth information. For a setup
with a pedestrian involved and a traffic light state that has a lower classification accuracy, for example,
red-yellow, the information exceeds the previous case, as we now also need a correct pedestrian locali-
sation. Hence, with the lower classification accuracy and the intuitive assumption that with increasing
information needed to identify a setup, the error rate grows, there should be a discrepancy in error rates
for the different setups, not only for the false-positives, as we observed, but also for the false negatives.
An examining of false-negatives, by observing samples that our procedure discarded, would therefore be
a task that could improve the value of the calculated probabilities, by allowing for false-negative error
estimation. Besides that, we also thought about some other changes or improvements not directly re-
garding the results of our approach, but the approach itself.

First, one could improve the performance of the used networks, using more advanced alteration schemes
and also retrain the models on either some samples of DriveU (for the Panoptic-DeepLab model) or

Cityscapes (for the traffic light classifier) to facilitate the transfer.
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However, instead of using the old traffic light classifier, we propose to classify the type, state and relevance
with a model that operates on the full 2048x 1024 images instead of the crops. Doing so would, on the
one hand, make the creation of a separate dataset (DriveUC) obsolete, mitigating the error made due to
the difference in the DriveUC and the Cityscapes traffic light crops, while on the other hand probably
improving the relevance classification. The improvement in the relevance feature classification, we be-
lieve, is tied to the nature of the feature itself, with it being closely related to contextual information in
the image, i.e. the orientation of the car and direction of the road, the placement of the traffic light and
other traffic lights present in the image. A lot of this information gets lost when we use our approach,
whereat with a network working on the full-sized images, it is not.

To improve the pedestrian localisation, one could give pedestrian instances in the Cityscapes train seg-
mentation an additional label, based on the point where they stand (i.e. on the road/not on the road)
and then retrain the pre-trained Panoptic-DeepLab pipeline also classifying this additional label. Doing
so one could circumvent the very error sensitive'? procedure used to check if the pedestrian is on the
road or not, while also making the postprocessing obsolete. An approach to prevent errors like the one
depicted in fig. 22e, with pedestrians walking on perpendicular roads, on could perform a pose estimation
and discard all pedestrians that are headed in a different direction than across the PC.

Finally one could improve the selection process of pedestrian crossings by including criteria like the road
orientation and main pole axis the traffic light are attached to. With the poles, one could exclude the
error of selecting two traffic lights above the street, by looking for example at the main orientation of the
poles in the close neighbourhood of the TL. If this orientation is close to vertical, we keep the traffic light,
otherwise, we discard it. With the road orientation, one could probably mitigate errors, like in fig. 22b,
by discarding samples where the road orientation is close to horizontal.

Now in the course of this work, have shown that the accessibility of data as well as the advancement of
machine learning models, allows for the analysis of a rigid scenario in urban- and suburban-scenes and
named some improvements that could be applied to our approach. Further work could, therefore, either

improve the used approach or search for other critical scenarios in urban- and suburban-scene datasets.

14The main error in the segmentation category in tab. 17 is caused by wrongfully localising pedestrians on the road.
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(GLOSSARY

ASPP Atrous spacial pyramid pooling. 36, 37
bn Batch normalisation. 22, 23

CNN Convolutional neural network. 9, 10, 44

conv Convolution. 22, 23

FNN Feedforward neural network. 5, 6, 9, 10

i.i.d. Independent and identically distributed. 5, 24

MLE Maximum likelihood estimate. 8

NLL Negative logarithmic likelihood. 8

PC Pedestrian crossing managed by a traffic light system. 41, 42, 45, 47-51, 53, 54, 68
ReLU Rectified linear unit. 6, 10, 22, 23, 30

sigmoid The sigmoid function. 30

softmax Normalized exponential function. 7, 22

TL Traffic light. 47, 49, 50, 53, 54
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APPENDIX

A ALGORITHMS

Algorithm 1 PathSearch. The algorithm is configured for a model that should be minimised on the

criterion. However, this can be changed by initialising vspes; With ”—o00” and changing the relation in

line 9. to 7>".
Global:
M, C, O // model, criterion, optimizer
Dirain, Dvar // training and validation data
Input:
p, P // hyperparameter, hyperparameter alterations
Dbest <— none // best hyperparameter, initilised with none
VSpest <— +00 // best validation score, initialised with infinity
Output:

Pbests USbest

1: function PATHSEARCH(p, P, Dbest, USbest)

2 My, < APPLY (M, p) // initilise model,
3: Cp < APPLY(C, p) // criterion,
4: O, < ApPLY(O, p) // and optimizer with their hyperparameters
5: M, < TRAIN(Mp, Cp, Op, Dirain) // train model on the given configurations
6: vs < EVAL(My,, Cp, Dyar) // evaluate trained model on the validation data
7: if vs < vspest then // compare validation scores
8: VSpest <— VS // save the new best score
9: Dhest < P // save the new best hyperparameter
10: SHUFFLE(P)
11: for alteration in P do // random alteration according to P
12: p’ < APPLY(p, alteration)
13: Phest, UShest < PATHSEARCH(p', P, Doest, USbest)
14: end for

15: end if
16: return ppest, UsSpest // return best hyperparameters and validation score

17: end function
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Algorithm 2 earlyStopping.

Input:
E, Vicores // The epoch data and the validation scores data of the training
1 // a tuple that specifies the regression interval
Smaz // maximum allowed slope
Jsize // size of the mean filter
Output:
bool

1: function EARLYSTOPPING(E, Vicores, I, Smaz, [size)
Vscores — I\/IEANFILTER(VSCOTES7 fsize) // mean filter the score
a,b < LINREG(E, Vicores, I) // a is the slope and b the bias

if a > Smas then

2

3

4

5: return true
6 else

7 return false
8 end if

9

: end function
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Algorithm 3 Adam. The algorithm is taken from [7]. g7 is the elementwise square g ® g¢ and j! /2

denote (315 to the power of ¢ respectively.

Input:
«a

B, B2 €[0,1)

L(0)
6o

Output:
0.

1: function ADAM(L, 81, B2, ¢€,600)

mo <+ 0

v < 0

t+0

while 6y not converged do
t—t+1
gt <+ VoLi(0:-1)
me < B1-me—1+ (1 —B1) - g¢
v < Ba-vic1 + (1= Ba) - g7

my
1-pt
. ) vt
11: Vt < I_Bé

12: 0,5 < 9t71 — Q- f)mtt-&-e

10: my

13: end while
14: return 0

15: end function

// Stepsize

xponential decay rates for the moment estimates
E tial d tes for th t estimat

// Parameter for numeric stability

// Stochastic objective function with parameter 0

// Initial parameter vector

// The resulting parameters

// Initialise first moment vector
// Initialise second moment vector

// Initialise time step

// Get gradients w.r.t stochastic objective at timestep ¢
// Update biased first moment estimate

// Update bias second raw moment estimate

// Compute bias-corrected first moment estimate

// Compute bias-corrected second raw moment estimate

// Update parameters

// Resulting parameters
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B TABLES

class count ‘ width / pixel ‘ height / pixel
not relevant 382.027 16 + 13 36 + 25
relevant 294.776 24 £+ 18 55 £+ 32
not relevant, occluded 81.549 18 £ 17 36 + 26
relevant, occluded 33.196 32 +£ 29 52 £ 34
horizontal 454 31 +£ 21 137
vertical 746.055 20 + 17 43 £ 29
horizontal bus 40 32 + 22 18 +4
vertical bus 44.999 23 + 18 57 + 37
one light 18.126 19 + 16 14 £ 10
two lights 142.930 16 + 14 29 + 19
three lights 613.207 21 +£ 18 47 £ 30
four lights 17.285 22 + 18 68 + 40
off 178.530 17 £ 15 35 £ 22
red 231.109 20 + 16 44 + 31
yellow 27.398 23 + 18 47 £+ 33
red-yellow 11.796 23 + 20 52 + 35
green 342.715 22 + 18 48 + 32
circle 544.911 21 + 18 46 + 31
arrow straight 30.112 24 £ 20 54 £ 33
arrow left 57.020 23 + 18 51 + 31
arrow straight left 50 22 + 17 54 + 33
arrow right 6.831 27T £ 20 56 £ 32
pedestrian 132.703 15+ 11 31 + 19
cyclist 19.921 18 £ 15 43 £ 29
total 791.548 20 +£ 17 44 + 30

Tab. 14: Frequency of the individual classes in the complete DriveU dataset together with the mean and

standard deviation of pixel width and height. The total number of annotations is 791.548.




drop rate  learning rate  weight decay loss f-score  f-score:state  f-score:type

0.2 0.10000 1.0000 0.013747 0.411427 0.266899 0.555956
0.1 1.00000 1.0000 0.013535 0.411427 0.266899 0.555956
0.0 0.01000 1.0000 0.011997 0.411427 0.266899 0.555956
0.5 1.00000 0.0001 0.011243 0.418438 0.266899 0.569977
0.3 0.10000 0.0100 0.009962 0.551987 0.553406 0.554185
0.2 0.10000 0.0010 0.008621 0.651777 0.710733 0.592821
0.2 0.00100 0.1000 0.008242 0.676197 0.809581 0.584866
0.4 0.01000 0.0100 0.008015 0.678898 0.780265 0.577530
0.3 0.00100 0.1000 0.008437 0.679034 0.808666 0.581890
0.1 0.10000 0.0001 0.007239 0.682086 0.865650 0.584311
0.1 0.00100 0.1000 0.008712 0.697817 0.828187 0.587999
0.4 0.00100 0.1000 0.007679 0.709288 0.846182 0.582265
0.5 0.01000 0.0100 0.006948 0.729624 0.856527 0.626894
0.1 0.01000 0.0100 0.007099 0.731544 0.867693 0.595396
0.2 0.01000 0.0100 0.006849 0.733291 0.867631 0.632753
0.3 0.01000 0.0100 0.006884 0.740068 0.855668 0.630197
0.3 0.00001 1.0000 0.006098 0.757355 0.870155 0.651030
0.4 0.00001 0.0010 0.006043 0.782986 0.910453 0.658022
0.4 0.00001 0.0100 0.005374 0.789602 0.916865 0.669974
0.3 0.00001 0.0100 0.005263 0.801207 0.918563 0.690420
0.4 0.00001 0.1000 0.005352 0.801416 0.918594 0.688073
0.4 0.01000 0.0010 0.005504 0.805990 0.908413 0.708626
0.1 0.01000 0.0010 0.005570 0.806880 0.910934 0.720384
0.2 0.00001 1.0000 0.005483 0.808588 0.896149 0.721251
0.3 0.01000 0.0010 0.005229 0.809000 0.909295 0.715693
0.1 0.00001 1.0000 0.005321 0.812541 0.895308 0.733576
0.3 0.00001 0.0010 0.005081 0.815871 0.920530 0.711222
0.2 0.01000 0.0010 0.005286 0.817727 0.910526 0.733965
0.3 0.00001 0.1000 0.004750 0.826267 0.919485 0.735642
0.2 0.00001 0.0010 0.004619 0.826948 0.923089 0.734061
0.1 0.00001 0.0001 0.004509 0.838738 0.923205 0.755479
0.2 0.00001 0.1000 0.004585 0.839313 0.925173 0.755911
0.2 0.00001 0.0100 0.004569 0.840202 0.923132 0.757393
0.1 0.00001 0.1000 0.004304 0.847056 0.926504 0.770663
0.1 0.00001 0.0100 0.004254 0.850246 0.933185 0.768545
0.4 0.01000 0.0001 0.003778 0.857369 0.931416 0.791537
0.4 0.00100 0.0100 0.004108 0.864443 0.932296 0.798393
0.3 0.01000 0.0001 0.003729 0.869562 0.934022 0.805102
0.3 0.00100 0.0100 0.003881 0.871481 0.930866 0.822456
0.2 0.01000 0.0001 0.003652 0.874602 0.938411 0.815406
0.2 0.00100 0.0100 0.003707 0.874693 0.938491 0.821777
0.1 0.01000 0.0001 0.003400 0.878737 0.940165 0.822704
0.4 0.00010 0.0001 0.004055 0.878754 0.936522 0.826125
0.3 0.00010 0.0001 0.003632 0.883433 0.942895 0.830372
0.2 0.00010 0.0001 0.003581 0.883559 0.942790 0.828630
0.1 0.00100 0.0100 0.003433 0.885458 0.937963 0.838489
0.4 0.00010 0.1000 0.003629 0.885561 0.939575 0.846155
0.3 0.00010 0.0010 0.003496 0.887890 0.945977 0.834068
0.1 0.00010 0.0010 0.003723 0.888153 0.941191 0.840202
0.4 0.00010 0.0010 0.003736 0.888562 0.943279 0.835735
0.2 0.00010 0.0010 0.003518 0.888661 0.944959 0.835288
0.1 0.00010 0.0001 0.003569 0.891797 0.941053 0.845450
0.3 0.00010 0.1000 0.003580 0.892228 0.940617 0.847457
0.2 0.00010 0.1000 0.003397 0.894523 0.943268 0.848972
0.1 0.00010 0.0100 0.003273 0.898869 0.943970 0.861706
0.3 0.00100 0.0001 0.003092 0.902453 0.951906 0.855918
0.3 0.00100 0.0010 0.002952 0.903246 0.947744 0.865282
0.2 0.00100 0.0010 0.002874 0.903486 0.949044 0.867450
0.1 0.00100 0.0001 0.003233 0.903529 0.947532 0.860949
0.1 0.00100 0.0010 0.002928 0.905328 0.946176 0.866719
0.4 0.00100 0.0001 0.003084 0.905509 0.952772 0.860998
0.4 0.00010 0.0100 0.003352 0.907494 0.949557 0.868068
0.4 0.00100 0.0010 0.002938 0.907804 0.951338 0.867748
0.2 0.00100 0.0001 0.003150 0.907942 0.950693 0.872517
0.2 0.00010 0.0100 0.003085 0.909787 0.952077 0.873746
0.3 0.00010 0.0100 0.003049 0.911185 0.949691 0.874437

Tab. 15: Results of the random search on the hyperparameters of the type and state classifier together with
the results of the subsequent PathSearch algorithm. One row corresponds to a drop rate, learning rate and
weight decay configuration. The loss and the f-scores are calculated from the evaluation on the validation set
that is performed after every training epoch, with the denoted value forming the best score on the respective
configuration. Here the f-score is the mean overall class individual f-scores weighted by the positive samples in
that class. The rows are sorted ascending concerning the f-score and the bold font indicates the best score in a

column.
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drop rate depth learning rate weight decay loss f-score drop rate depth learning rate weight decay loss f-score
0.1 18 le-04 le-06 1.345e-03 0.000000 0.1 14 le-04 le-06 7.375e-04 0.844733
0.1 15 le-03 le-01 1.266e-03 0.000000 0.1 15 le-05 le-02 7.076e-04 0.844772
0.3 7 le-01 le+00 1.357e-03 0.000000 0.0 15 le-05 le-03 6.559e-04 0.844895
0.5 6 le-05 le+00 1.344e-03 0.000000 0.1 17 le-02 le-04 6.684e-04 0.845203
0.0 9 le-03 le4+00 1.358e-03 0.000000 0.1 18 le-02 le-05 7.049e-04 0.845330
0.2 11 le+00 le+00 1.347e-03 0.000000 0.1 16 le-02 le-07 6.890e-04 0.845437
0.5 7 le-01 le+00 1.357e-03 0.000000 0.1 13 le-02 le-05 7.002e-04 0.845817
0.3 12 le-04 1le400 1.348e-03 0.000000 0.0 14 le-02 le-04 6.307e-04 0.846212
0.5 12 le-05 le-01 1.347e-03 0.599072 0.1 14 le-03 le-07 6.422e-04 0.846285
0.5 16 le-05 le-03 1.345e-03 0.599072 0.1 13 le-02 le-07 6.416e-04 0.846362
0.5 15 le+00 le-02 1.345e-03 0.599072 0.1 17 le-05 le-02 6.667e-04 0.846421
0.1 16 le-03 le-01 1.142e-03 0.765769 0.0 12 le-02 le-04 6.283e-04 0.846460
0.1 17 le-03 le-01 1.102e-03 0.798062 .0 18 le-02 le-04 6.296e-04 0.846525
0.1 16 le-02 le-03 8.848e-04 0.800807 .0 16 le-03 le-02 6.542e-04 0.846693
0.1 17 le-02 le-06 8.954e-04 0.803359 0.0 15 le-02 le-04 6.277e-04 0.846847
0.1 16 le-02 le-05 8.669e-04 0.806684 0.0 16 le-05 le-02 6.761le-04 0.846891
0.1 18 le-02 le-06 8.317e-04 0.806698 0.0 17 le-05 le-02 6.706e-04 0.847006
0.1 15 le-02 le-03 9.286e-04 0.808028 0.0 17 le-05 le-04 6.437e-04 0.847101
0.3 11 le-03 le-01 1.068e-03 0.813899 0.0 15 le-05 le-02 6.778e-04 0.847314
0.1 16 le-02 le-06 8.440e-04 0.821416 0.1 17 le-03 le-03 6.600e-04 0.847372
0.1 14 le-03 le-04 8.093e-04 0.829198 1 15 le-05 le-04 6.348e-04 0.847377
0.0 16 le-03 le-01 8.760e-04 0.832617 0.0 17 le-04 le-01 8.262e-04 0.847490
0.1 14 le-03 le-03 8.010e-04 0.832676 0.0 16 le-04 le-01 8.293e-04 0.847962
0.5 6 le-01 le-05 8.562e-04 0.834115 0.1 15 le-05 le-03 6.780e-04 0.847971
0.1 18 le-03 le-05 7.942e-04 0.834267 0.1 15 le-04 le-04 6.899e-04 0.848006
0.0 13 le-03 le-01 9.451e-04 0.836773 0.0 16 le-02 le-04 6.281e-04 0.848006
0.1 18 le-02 le-04 7.432e-04 0.837335 0.0 16 le-05 le-04 6.445e-04 0.848082
0.0 17 le-03 le-01 8.675e-04 0.837463 0.1 13 le-03 le-07 6.939e-04 0.848091
0.0 14 le-02 le-03 6.937e-04 0.838249 0.1 15 le-04 1le-07 6.391e-04 0.848179
0.2 11 le-01 le-05 6.852e-04 0.838651 0.0 15 le-05 le-04 6.140e-04 0.848234
0.0 15 le-03 le-01 8.585e-04 0.838807 0.0 17 le-05 le-03 6.378e-04 0.848360
0.1 18 le-04 le-05 7.360e-04 0.839065 0.0 17 le-02 le-04 6.300e-04 0.848363
0.1 14 le-01 le-05 7.157e-04 0.839333 0.1 17 le-05 1le-03 6.644e-04 0.848643
0.0 15 le-03 le-02 6.956e-04 0.839906 0.1 14 le-03 le-05 6.688e-04 0.848863
0.2 10 le-02 le-02 7.110e-04 0.840266 0.0 15 le-04 le-01 8.411e-04 0.848886
0.0 15 le-02 le-03 6.760e-04 0.840342 0.0 17 le-03 le-02 6.502e-04 0.848986
0.1 14 le-02 le-03 6.906e-04 0.840386 0.1 16 le-03 le-03 6.795e-04 0.848989
0.1 17 le-04 le-01 9.711e-04 0.840858 0.1 17 le-04 le-03 6.287e-04 0.849387
0.1 17 le-05 le-04 6.330e-04 0.841290 0.2 16 le-05 le-03 6.780e-04 0.849545
0.1 16 le-04 le-01 9.461e-04 0.841426 0.0 16 le-02 le-05 6.187e-04 0.849566
0.1 16 le-02 le-04 6.916e-04 0.841459 0.1 14 le-04 le-04 6.317e-04 0.849723
0.1 17 le-03 le-05 6.606e-04 0.841686 0.1 17 le-04 le-02 7.509e-04 0.849909
0.0 16 le-02 le-03 6.611e-04 0.841796 0.0 15 le-04 le-07 6.046e-04 0.850136
0.1 15 le-03 le-02 7.102e-04 0.842046 0.1 14 le-02 le-05 6.236e-04 0.850145
0.1 17 le-03 le-02 6.974e-04 0.842427 0.1 13 le-04 le-05 6.432e-04 0.850299
0.1 15 le-04 le-01 9.669e-04 0.842571 0.1 16 le-05 le-01 8.988e-04 0.850299
0.0 16 le-05 le-03 6.266e-04 0.842675 0.1 17 le-05 le-01 9.366e-04 0.850313
0.1 15 le-02 le-04 6.716e-04 0.843237 0.1 15 le-05 le-01 1.019e-03 0.850400
0.1 17 le-02 le-05 6.884e-04 0.843243 0.1 15 le-03 le-03 6.309e-04 0.850500
0.1 15 le-03 le-04 6.279e-04 0.843264 0.0 16 le-04 le-06 6.028e-04 0.850502
0.1 16 le-03 le-02 7.408e-04 0.843317 0.1 14 le-03 le-06 6.558e-04 0.850638
0.1 15 le-02 le-06 6.696e-04 0.843811 -0 18 le-04 le-06 6.021e-04 0.850667
0.1 15 le-02 le-05 6.754e-04 0.843999 0.0 14 le-04 le-06 6.079e-04 0.850721
0.1 16 le-05 le-04 7.060e-04 0.844476 0.1 12 le-05 le-05 6.315e-04 0.850878
0.1 14 le-02 le-04 6.767e-04 0.844617 0.1 16 le-05 le-03 6.715e-04 0.850991
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drop rate depth learning rate weight decay loss f-score drop rate depth learning rate weight decay loss f-score
0.1 16 le-04 1le-03 6.254e-04 0.851008 0.0 17 le-05 le-01 8.024e-04 0.853481
0.0 15 le-02 le-05 6.150e-04 0.851012 0.0 13 le-02 le-06  5.952e-04 0.853646
0.1 16 le-03 le-04 6.573e-04 0.851020 0.1 15 le-04 le-03 6.364e-04 0.853714
0.0 15 le-04 le-06 5.986e-04 0.851187 0.1 17 le-04 le-06  6.246e-04  0.853777
0.0 13 le-04 le-05 6.009e-04 0.851205 0.1 17 le-04 le-04 6.170e-04 0.853791
0.0 13 le-02 le-05 6.126e-04 0.851224 0.1 16 le-04 le-05 6.326e-04 0.853836
0.0 18 le-02 1le-05 6.142e-04 0.851238 0.1 16 le-03 le-07  6.046e-04  0.853926
0.0 14 le-04 1le-07 6.021e-04 0.851338 0.0 16 le-03 le-07 6.011e-04 0.853956
0.0 14 le-03 le-03 6.222e-04 0.851442 0.1 14 le-02 le-07 6.126e-04 0.854008
0.1 16 le-04 le-07 6.411e-04 0.851537 0.0 13 le-03 le-05  5.874e-04  0.854215
0.1 17 le-03 le-06 6.320e-04 0.851643 0.1 15 le-03 le-07 6.034e-04 0.854221
0.0 16 le-05 le-01 7.976e-04 0.851660 0.0 17 le-04 le-02 6.191e-04 0.854303
0.0 13 le-04 le-06 5.994e-04 0.851665 0.0 15 le-02 le-06  5.953e-04  0.854348
0.1 15 le-03 le-06 6.316e-04 0.851792 0.1 14 le-04 le-05 6.093e-04 0.854402
0.0 16 le-04 le-05 6.007e-04 0.851813 0.1 14 le-04 le-03 6.143e-04 0.854484
0.1 16 le-04 le-02 6.527e-04 0.851828 0.1 13 le-03 le-06 6.049e-04 0.854528
0.0 17 le-03 le-03 6.060e-04 0.851870 0.1 16 le-03 le-05 6.048e-04 0.854734
0.0 17 le-02 le-05 6.055e-04 0.851925 0.0 13 le-03 le-07 5.862e-04  0.854839
0.0 14 le-02 le-05 6.048e-04 0.852116 0.1 18 le-03 le-06 6.188e-04 0.854898
0.1 15 le-02 le-07 6.214e-04 0.852154 0.1 17 le-04 le-05 6.108e-04 0.854924
0.0 17 le-04 le-06 5.973e-04 0.852158 0.1 15 le-03 le-05 6.117e-04  0.854976
0.0 16 le-03 1le-03 6.108e-04 0.852184 0.0 15 le-04 le-02 5.991e-04 0.855026
0.1 14 le-02 le-06 6.235e-04 0.852300 0.0 17 le-03 le-06 5.850e-04 0.855038
0.0 15 le-03 le-03 6.059e-04 0.852300 0.1 15 le-04 le-06  6.142e-04 0.855099
0.1 16 le-04 le-06 6.252e-04 0.852343 0.0 16 le-03 le-06 5.851e-04 0.855127
0.0 16 le-04 le-04 5.996e-04 0.852345 0.0 14 le-03 le-07  5.853e-04  0.855210
0.0 14 le-04 le-05 5.983e-04 0.852362 0.0 14 le-02 le-07  5.946e-04 0.855309
0.1 16 le-03 le-06 6.491e-04 0.852383 0.1 10 le-05 le-02 6.072e-04 0.855439
0.0 17 le-04 le-05 5.973e-04 0.852395 0.1 14 le-04 le-07  6.388e-04  0.855449
0.0 18 le-04 le-04 5.970e-04 0.852401 0.0 16 le-02 le-06 5.875e-04 0.855643
0.0 15 le-04 le-03 5.947e-04 0.852403 0.0 18 le-03 le-05 5.837e-04 0.855751
0.0 14 le-04 1le-03 5.942e-04 0.852477 0.0 18 le-03 le-06  5.833e-04 0.855844
0.1 13 le-03 le-05 6.176e-04 0.852491 0.0 17 le-02 le-06 5.924e-04 0.855850
0.1 17 le-03 le-04 6.192e-04 0.852503 0.0 16 le-04 le-02 5.958e-04 0.855891
0.0 16 le-04 le-03 5.956e-04 0.852645 0.0 18 le-02 le-06  5.925e-04 0.856033
0.1 18 le-03 le-04 6.486e-04 0.852654 0.0 13 le-02 le-07 5.894e-04 0.856114
0.0 15 le-05 le-01 8.109e-04 0.852698 0.0 17 le-03 le-04 5.886e-04 0.856320
0.0 16 le-04 1e-07 5.986e-04 0.852720 0.0 15 le-03 le-05 5.871e-04 0.856373
0.1 15 le-04 le-02 6.654e-04 0.852724 0.0 15 le-03 le-06 5.822e-04 0.856462
0.1 18 le-04 le-04 6.264e-04 0.852791 0.0 15 le-03 le-04 5.853e-04 0.856470
0.0 18 le-04 le-05 5.963e-04 0.852813 0.0 14 le-02 le-06 5.886e-04 0.856531
0.0 13 le-04 le-07 5.978e-04 0.852843 0.0 15 le-03 le-07 5.841e-04 0.856533
0.1 13 le-02 le-06 6.175e-04 0.852912 0.0 13 le-03 le-06  5.868e-04  0.856591
0.0 15 le-04 le-04 5.980e-04 0.852945 0.0 15 le-02 le-07 5.891e-04 0.856662
0.1 13 le-04 le-07 6.104e-04 0.852971 0.0 14 le-03 le-06 5.805e-04 0.856814
0.0 17 le-04 1le-03 5.959e-04 0.853001 0.0 18 le-03 le-04 5.867e-04 0.856859
0.0 17 le-04 le-04 5.998e-04 0.853016 0.0 16 le-03 le-04 5.843e-04 0.856892
0.1 16 le-05 le-02 6.516e-04 0.853057 0.0 16 le-03 le-05 5.845e-04 0.857073
0.0 15 le-04 le-05 5.997e-04 0.853111 0.0 16 le-02 le-07  5.850e-04 0.857131
0.1 13 le-04 le-06 6.127e-04 0.853259 0.0 14 le-03 le-05 5.839e-04 0.857278
0.0 14 le-04 le-04 6.083e-04 0.853279 0.0 14 le-03 le-04 5.867e-04 0.857574
0.1 16 le-04 le-04 6.251e-04 0.853331 0.0 17 le-03 le-05 5.826e-04 0.858465
0.1 15 le-04 le-05 6.153e-04 0.853340

Tab.

15: Results of the random search on the hyperparameters of the relevance classifier together with the

results of the subsequent PathSearch algorithm. One row corresponds to a drop rate, depth, learning rate and

weight decay configuration. The loss and the f-scores are calculated from the evaluation on the validation set

that is performed after every training epoch, with the denoted value forming the best score on the respective

configuration. Here the rows are sorted ascending concerning the f-score and the bold font indicates the best

score in a column.
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Label Precision ‘ Recall ‘ F-Score ‘ Accuracy ‘ Correct ‘ Incorrect ‘ N.o.p.s. ‘ N.o.n.s.

off 0.946978 | 0.899652 | 0.922709 | 0.962033 | 231.469 9.135 60.609 | 179.995
red 0.940421 | 0.936146 | 0.938279 | 0.965425 | 232.285 8.319 67.545 | 173.059
yellow 0.739259 | 0.862909 | 0.796312 | 0.986135 | 237.268 3.336 7.557 | 233.047
red-yellow 0.722723 | 0.697557 | 0.709917 | 0.991563 | 238.574 2.030 3.561 | 237.043
green 0.959170 | 0.979957 | 0.969452 | 0.973990 | 234.346 6.258 | 101.332 | 139.272
circle 0.932304 | 0.914689 | 0.923412 | 0.896165 | 215.621 24.983 | 164.656 75.948
arrow straight 0.815767 | 0.769604 | 0.792013 | 0.985453 | 237.104 3.500 8.659 | 231.945
arrow left 0.829640 | 0.874914 | 0.851676 | 0.977835 | 235.271 5.333 17.500 | 223.104
arrow straight left | 1.000000 | 0.000000 | 0.000000 | 0.999967 | 240.596 8 8 | 240.596
arrow right 0.703022 | 0.682714 | 0.692719 | 0.994510 | 239.283 1.321 2.181 | 238.423
pedestrian 0.739319 | 0.816948 | 0.776197 | 0.919498 | 221.235 19.369 41.114 | 199.490
cyclist 0.598649 | 0.450971 | 0.514421 | 0.977049 | 235.082 5.522 6.486 | 234.118
relevant 0.602843 | 0.313159 | 0.412195 | 0.628988 | 151.337 89.267 99.946 | 140.658

Tab. 16: The results on the thirteen (fourteen) labels of the combined classification for the reduced DriveUC
test set. The total number of samples in the DriveUC test set is 240.604. We omitted the "not relevant” label
since the information about it is redundant with the ”relevant” label. N.o.p.s. and N.o.n.s. stand for the

Number of positive/negative samples respectively.
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Fig. 23: The depth, position, width and height features of the traffic light bounding boxes for the DriveU,

DriveUC and Cityscapes datasets. Notice, that the x-axis in the width and the height diagram of Cityscapes

cover a bigger range than the ones of DriveuU and DriveUC.
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The random path search for the hyperparameter of the relevance classifier. Every patch (i.e. cross)

Fig. 24

corresponds to a certain configuration of depth, drop rate, learning rate and weight decay. The colour of the

patch indicates the best validation f-score on the respective configuration. The white patches correspond to

configurations that were not explored.
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(a) DriveU

(b) DriveU

(c) DriveU

(d) DriveU

(e) DriveU
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(f) DriveU

(g) DriveU

(i) Cityscapes train

(j) Cityscapes train-extra, test
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(k) Cityscapes train-extra, test

Fig. 25: All the P(P=yes, state=green) samples from the examined datasets, after excluding wrong samples.
The images contain bounding boxes around the managing traffic lights and the detected pedestrian, together
with the depth information and for Cityscapes the output probabilities of the classifier. We also added the

panoptic segmentation with the points used to make up the feet-polygon of the detected pedestrian.
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