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Abstract

Based on the proofs of the continuity of the conditional entropy by Alicki, Fannes,
and Winter, we introduce in this thesis the almost locally affine (ALAFF) method.
This method allows us to prove a great variety of continuity bounds for the derived
entropic quantities. First, we apply the ALAFF method to the Umegaki relative
entropy. This way, we recover known almost tight bounds, but also new conti-
nuity bounds for the relative entropy itself. Subsequently, we apply our method
to the Belavkin-Staszewski relative entropy (BS-entropy). This yields novel ex-
plicit bounds in particular for the BS-conditional entropy, the BS-mutual and
BS-conditional mutual information. On the way, we prove almost concavity for
the Umegaki relative entropy and the BS-entropy, which might be of independent
interest. We conclude by showing some applications of these continuity bounds
in various contexts within quantum information theory and give an outlook on
future lines of work.

Keywords: Continuity bounds, Umegaki relative entropy, Belavkin-Staszewski
relative entropy.
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CHAPTER 1

Preface

In information theory and in particular, quantum information theory one major
task is to evaluate the difference between quantum states. Although the family
of operator norms seem to be a natural choice from a mathematical perspective,
problems from physics naturally bring up so-called divergence measures. A wide
variety of these quantities exist and their mathematical understanding is crucial
if one wants to work with them in both the math and physics context.

In this work, we focus our attention on continuity bounds for those quanti-
ties and for related functions such as conditional entropy, (conditional) mutual
information and divergence bounds for two particular divergences. The first one
is the Umegaki and the second one is the Belavkin-Staszewski relative entropy.

The thesis is structured as follows. We will first give an introduction to the
mathematical framework we work with. Starting with operator theory and convex
analysis in Section 2.1, we go to norms and trace inequalities in Section 2.2 and
finally talk about divergences and the definitions of quantities like the conditional
entropy and (conditional) mutual information for a general divergence. This final
section of the chapter also includes a discussion of the ambiguities that arise in
the case of the BS-entropy.!

Building on that, Chapter 3 introduces the almost locally affine (ALAFF)
method which translates joint convexity and almost joint concavity into a plethora
of results. Amongst them are continuity bounds for entropic quantities derived
from the divergence and continuity bounds for the divergence itself on a suitably
defined set.

We then go on and prove this almost joint concavity for the relative entropy
in Chapter 4 and demonstrate how the ALAFF method works. In the course of
that, we recover the well-established (almost) tight bounds for the conditional
entropy by Winter 2] and also the ones for the (conditional) mutual information.
We further manage to derive something that we call a divergence bound which

1Let it be noted that we will not give an introduction to continuity bounds in this work and
just discuss related work right when we derive our result. The interested reader is referred to

[1].



2 1. PREFACE

performs slightly worse than the preexisting bound but has the advantage that
none of the involved states has to be full rank. Finally, we construct a continuity
bound for the relative entropy itself.

The subsequent chapter, Chapter 5, follows a similar structure. We again
prove almost joint concavity, but this time for the Belavkin-Staszewski or BS-
entropy for short. Obtaining similar results for the BS-conditional, (conditional)
mutual information and divergence bounds is slightly more involved than in the
case of the relative entropy. This is due to some pathologies, i.e. discontinuities
that these quantities exhibit, and that we discuss in that chapter as well.

We conclude this work with Chapter 6, revolving around applications of the
obtained results in various contexts of the field of quantum information. They
allow us to obtain bounds on the conditional mutual information of a state in
terms of its norm distance to its Petz recovery. We further obtain a bound on
the difference between the relative and the BS-entropy and establish continuity
bounds for the Rains and the BS-Rains information. At last, we give an outlook
on open problems and future lines of work.

This whole thesis has been adapted into a paper [1] together with Andreas
Bluhm, Angela Capel-Cuevas and Antonio Pérez-Hernandez.



CHAPTER 2

Introduction

In this chapter, we introduce the mathematical framework. We start with the
fundamentals, like introducing a Hilbert space, and its operator space, and very
roughly describe concepts like adjoint operators, functional calculus and operator
monotonicity, convexity and concavity respectively. We build upon these basics
when introducing norms on the operator space and further state important trace
inequalities that are essential when working with entropic functions and functions
of operators in general. We wrap up with the discussion of divergences and how
one builds all the derived quantities such as for example the conditional entropy
from those. In the course of this, we will come across ambiguities that lead to
open questions we leave for future work (see Section 6.2).

2.1 Operator theory and convex analysis

Our starting point is a Hilbert space of finite dimension d, which can be isomor-
phically identified with C%. We will not make the identification explicit every
time and just write abstractly H. Elements of this Hilbert space will be denoted
by [¢), |¢) or |i) with i € N. A Hilbert space carries by definition an inner prod-
uct, which we will denote by (:|-). It further, as every other vector space, admits
an algebra of (bounded!) linear operators B(H), which can be identified with the
complex n x n matrices. We denote elements of B(#) using capital letters and
often call them just operators. This latter space, or in particular the subset of
normalised positive semi-definite operators S(H), is the fundamental space we
are interested in.

To get an understanding of the defining property of a quantum state, i.e. an
element of S(H), we need the concept of normalisation as well as the Lowner
order on the set of self-adjoint operators. First, note that for every operator
A in B(H), there exists an adjoint operator A*, implicitly defined via the inner

!Since the underlying Hilbert space is finite, linearity is equivalent to boundedness as well
as continuity.
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product:
(Y|Ag) = (A%Ylo)  VI[Y),|o) e H .

An operator that coincides with its adjoint is called self-adjoint or Hermitian.
Using again the structure given by the inner product, we can establish a partial
order on the set of self-adjoint operators, where for A, B € B(H) self-adjoint

A>B & (@A-BW)>0 V[Y)eH. (2.1)

The inequality can be made strict, by just replacing > with > on both sides of
Eq. (2.1). If for A € B(#H) with A self adjoint, A > 0 we call it positive semi-
definite and further positive definite if A > 0. If such a self-adjoint operator
further has trace one, i.e. the function

d
tr:B(H) —»C, A > (i|Ai)

i=1

for (i))%, an orthonormal basis, evaluates to one, we call it a quantum state,
density matriz, or just state. The set of such operators, as we have already
mentioned, is denoted by S(#H) and we use p, o, 7 and 7 to identify its elements.
If we want to restrict this set even further, we indicate this with a subindex. Thus,
the set of positive definite quantum states becomes Sy (H), or if we moreover only
want to admit states with a minimal eigenvalue greater than m, we write S, (#).

To define divergences, entropies or just general functions of operators, we need
to dive a little into spectral theory. We first note that a self-adjoint operator A
has a spectral decomposition

A= Zn:/\iPm
i1

where \; and P; are, respectively, its eigenvalues and spectral projections. For
any function f : R — R, one then defines the operator f(A) € B(H) as

FA) =3 FOP.
=1

With the partial order defined on the self-adjoint operators, one can extend the
concept of monotonicity and convexity (concavity) to functions on operators. We
call a function f : I — R on an interval I C R operator montone if for all finite-
dimensional Hilbert spaces, all self-adjoint operators A, B € B(H) with spectrum
contained in I and A < B,

f(A) < f(B)
holds true. We further call f operator convex if for A € [0,1]

FAA+ (1 =NB) <Af(A) + (1= Nf(B).
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Following from the above we call f operator concave if —f is operator convex.
Operator convex functions include x — zlog(z) and z — z' for ¢t € [1,2] and
operator concave and operator monotone functions are for example x — log(z)
and x — —z for t € [~1,0] all on the domain (0,00). The theorem from which
all these properties follow is the famous Lowner-Heinz theorem.

From the operator monotonicity and convexity (concavity) follow several
properties such as the operator Jensen inequality, the Sherman-Davis inequal-
ity and more. We will only state the Sherman-Davis inequality to give the reader
an intuition for such kinds of inequalities and because it is used later.

Theorem 2.1 (Sherman-Davis inequality).
Let f : I — R an operator convex function, A € B(H) self-adjoint and with
spectrum in I and P an orthogonal projection, then

Pf(PAP)P < Pf(A)P

The proofs of the above theorem as well as of the other claims made here can
be found in [3|, which together with [4] gave the inspiration for this section.

2.2 Norms and trace inequalities

We have already talked about normalisation and while doing so swept under the
rock that the trace that we use in this context can also be written as a norm,
the so-called one norm. The fact that it reduces just to the trace in the case of
positive semi-definite operators is due to the exact same property, i.e. positive
semi-definiteness. For general operators, one defines the one norm as

Iy : B(H) — [0, 00), Awtr{\/A*A} — to[|A]].

Naturally |A| := v A*A. In the case of positive semi-definite operators, all eigen-
values are positive, hence the one norm reduces just to the trace.

The above is a representative of the Schatten p-norms, which are defined for
every p > 1 as

I, : B(H) = [0,00), A tr[|AP]7 .

For p = 1 we clearly recover the one norm whilst for p — oo one obtains the
spectral norm or operator norm. Besides being norms those functions have several
more useful properties, for example satisfy for A € B(H), [|All, = [|A*], and
are submultiplicative, meaning for A, B € B(H), we find [|AB|[, < [|A]l,| B,
Similarly to L,-norms we also have a Hélder inequality, i.e. for p € [1,00) and ¢
such that & + ¢ = 1%, we find

IAB][, < [[All,lIBll,

2The case p = 1,q = oo is the limiting case inequalities with p and ¢ finite.



6 2. INTRODUCTION

with A, B € B(#H). To find a more thorough discussion we again refer to [3] and
[5].

Closely related to those norm inequalities are the trace inequalities that have
shown to be fundamental when looking at properties of entropic quantities. We
will only introduce the Peierls-Bogolubov inequality as well as a Corollary that
is a consequence of one of the so-called multivariant trace inequalities [6]. Both
of them are substantial when proving results for the relative as well as the BS-
entropy. We begin with the Peierls-Bogolubov inequality.

Theorem 2.2 (Peierls-Bogolubov, [7]).
For A, B € B(H) self-adjoint and tr [eA] =1, we find

log tr [eAeB] > logtr [eA+B] > tr [BeA]

The following Corollary can be found as Corollary 3.3. in [6] and is the
limiting case of the generalised Araki-Lieb-Thirring inequality presented in the
very same paper.

Corollary 2.3. Let p > 1, Bo(t) = Z(cosh(nt) +1)~!, n € N and consider a
collection {H}7_y C B(H) of self-adjoint operators. Then

log exp(ZHk> < /dtﬁo(t)log Hexp((1+it)Hk)
k=1 5 k=1 v

For the case n = 3 and p = 2 substituting Hy, + %Hk and using the concavity of
the logarithm as well as Jensen’s inequality, translates the above into

tr[exp(H1 + Hy + H3)]

o0

< / dtBo(t) tr [exp(Hl)eXp<1+2itH2> eXP(H;J,)eXp(l ;it}b)] . (2.2)

—00

2.3 Divergences

We will now come to the quantities we are investigating in this thesis, namely
quantum divergences and their derivates. As there exists an axiomatic definition
of the latter, we want to give a little context on how those came along, starting
with their classical counterparts. Note, that there exists an embedding of the
classical setting into the quantum setting just by requiring the involved states
to commute. This allows for simultaneous diagonalisation meaning they can be
identified with just diagonal matrices with non-negative entries that sum to one.

In 1961 Alfréd Reényi took an axiomatic approach [8] to define the well known
Shannon entropy [9] and the Kullback-Leibler divergence [10|. Indeed he stated
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five axioms that describe desirable properties of uncertainty measures and six
axioms accomplishing the same for measures of distinguishability respectively.
Those axioms only allowed for the two named quantities as solutions. By relaxing
one of the five (six) axioms he further managed to derive a whole family of
entropies and divergences, controlled by a parameter « € (0,1) U (1,00). Today
those families are called, respectively, a-Rényi entropies and a-Rényi divergences
after him.

Following a similar approach one can axiomatically define quantum diver-
gences, as it is done in for example [11]. It turns out that a generalisation® of
the original axioms is not enough and one has to add an additional one to reach
a sensible result. This complementary axiom requires a divergence D to ful-
fil the so-called data-processing inequality (DPI). Meaning for every completely
positive, trace-preserving (CPTP) map 7" and quantum states p, o:

D(pllo) = D(T(p)IT (o)) -

In the classical setting, the DPI is a consequence of the six initial axioms, while
in the quantum setting, this is still an open question.

It is also remarkable that there is not a unique family of functionals admitted
by the axioms, as in the classical case, but several so-called quantum Rényi
divergences. This is due to the non-commutative nature of quantum mechanics.
Indeed, as soon as one assumes that the involved states (operators) commute, all
the quantities reduce to the classical unique counterpart.

We will not dive into this jungle of divergences nor discuss any family in par-
ticular but only focus on the two divergences that are relevant for this work, the
Umegaki [12]| and the Belavkin-Staszewski [13] relative entropy. For an extensive
discussion of quantum divergences, definitions and proofs of claims made here we
refer the interested reader to [11]. The first quantity we want to introduce is the
Umegaki relative entropy.

Definition 2.4 (Umegaki relative entropy, [12]).
For p,0 € S(H), we define the Umegaki relative entropy, or just relative entropy

as
tr[plog p — plogo] if kero C kerp
+00 else '

D(pllo) == {

The second one is the Belavkin-Staszewski relative entropy.

Definition 2.5 (Belavkin-Staszewski relative entropy, [13]).
For p,o0 € S(H), we define the Belavkin-Staszewski entropy or BS-entropy for

3As already mentioned classical probability distributions can be represented by diagonal
matrices.
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short, as

tr [,0 1og(p1/2<7_1,01/2)] if kero C kerp
+o00 else '

D(plo) := {

Note that in both definitions we used the convention % =0 and Olog0 = 0.
It holds in general that for p,o € S(H), D(p|lo) < D(p|lo) [11, Eq. (4.35)] with
equality iff p and o commute. We further note that both, the relative and the
BS-entropy, can also be defined in terms of positive semi-definite operators A, B
(not necessarily normalised), by replacing p with A, o with B and dividing by
tr[A].

Before we can define the entropic quantities derived from a divergence, we
have to first introduce bipartite Hilbert spaces and the partial trace. A bipartite
Hilbert space is given as H = H4 ® Hp with H 4 and Hp both Hilbert spaces
themselves and ® denoting the tensor product. The explicit construction can
be found in for example [3]. We will write an index to all quantities that are
associated with either one of the spaces. For example, dp is the dimension of the
space Hp and pp € S(Hp) is the image of p € S(H4 ® Hp) under the CPTP
map that is the partial trace try[]. Note that the index of the partial trace
indicates the system we trace out while the index of the state is the system the
state lives on. Further note that sometimes, under slight misuse of notation, we
write the system in the index of the state without the state being an image under
a partial trace, i.e. for p € S(Ha® Hp) we write pap or for o € S(Hp), op.
This is done to put emphasis on the system the state stems from. As already
mentioned the partial trace is a CPTP map

trp[]: B(Ha®Hp) = B(Hp), N — tra[N],
where tr4[N] is the unique element of B(H ) such that the equality
tr[M tr4[N]] = tr[1l 4 @ M N]

holds for all M € B(Hp). Analogously one can define trp[-] and further extend
those concepts also to n-partite spaces.

Now that we know what n-partite spaces and the partial trace are, we can
come to define conditional entropy, mutual information and conditional mutual
information for a general divergence. The course we will take is starting with
the representations of those quantities in terms of the von Neuman entropy [14]
given as

S(p) = —tr[plog p]
for a p € S(H)*, rewrite them in terms of the relative entropy and then ab-

stract from those to definitions. We summarise those steps in the following two
definitions, beginning with the original quantities.

*We again used the convention 0log 0 = 0.
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Definition 2.6 (Conditional entropy, mutual and conditional mutual informa-
tion). Let H4 ® Hp a bipartite Hilbert space, then the conditional entropy for
pap € S(Ha®Hp) conditioned on the system B is given as

H,(A|B) := S(pas) — S(pB)
= —D(papll 1a®pp)

= max —D 14®0B),
S (paBll1a®0oB)

and the mutual information is given by

I,(A: B) :=S(pa) + S(pB) — S(paB) = D(paslpa ® pp) -

Further for a tripartite system Ha @ Hp @ Ho and papc € S(HAa®@Hp @ He),
we can define the conditional mutual information as

I,(A: B|C) == S(pac) + S(psc) — S(pc) — S(pasc)
= H,(A|C) — Hy(A[BC)
=1,(A:BC)—1,(A:C).

All the above equalities are well known and most of them are obtained directly by
inserting definitions. Note that both, the mutual information and the conditional
mutual information, are symmetric in the A and B systems.

Based on the representations involving the relative entropy we now proceed
and define the conditional divergence (analogue of the conditional entropy), mu-
tual information and conditional mutual information for an arbitrary quantum
divergence.

Definition 2.7 (Conditional divergence, mutual and conditional mutual informa-
tion for a quantum divergence). Let D be a quantum divergence. Let H4 ® Hp
a bipartite Hilbert space, then the conditional divergence for pap € S(HA @ Hp)
conditioned on the system B is given by

H,(A[B) := —D(pag|| 14 ®p5) (2.3)

the variational conditional divergence by
H"(A|B) .=  sup —D(papl1a®0op) (2.4)

opES(Hp)

and the mutual information as
I,(A: B) :=D(pasllpa ® ps) -

Further for a tripartite system Hq @ Hp @ He and papec € S(HAQ Hp @ He)
we can define the (one sided) conditional mutual information as

[¥(A: B|C) :=H,(A|C) — H,(A|BC), (2.5)
and the (two sided) conditional mutual information as

[(A: B|C) :=1,(A: BC) —L,(A: C).
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In the case of the relative entropy (and possibly some others) the different
definitions for conditional divergence, mutual information and conditional mutual
information agree respectively. This is, however, not the case in general. For
the BS-conditional entropy, for instance, which we denote by J] , the general
inequality

H,(A|B) < H;* (A|B)

is strict in some cases. The numerics to support this claim are visualised in

0.6 1
0.4
g
2
= 0.2 1
g
E
0.0 —— H,(A|B)
—D(pagll ® op)
—0.2 7 ~D(paglll ®op)
T T T T T T
0 200 400 600 800 1000

sample

Figure 2.1: The red line is the BS-conditional entropy defined via the partial
trace evaluated at pap. The dots are the BS-entropy of the states psp and
14 ®op with a state op € S(Hp). The orange dots are the cases when the
—D(pag||14®0p) exceeds I;T(A\B)p. We sampled a total of 100.000 pairs of
pap and op and evaluated both fI(A]B)p and —lA)(pABH 14 ®ocp). Only a tenth
of all samples have been kept in addition to the ones that violated the bound.
Those were then plotted in ascending order w.r.t the magnitude of their BS-
conditional entropy. We further controlled the minimal eigenvalue to reduce the

risk of numerical flaws. The numerical simulation was conducted on H4 @ Hp =
C?®C2.

Fig. 2.1. Not only that but we further find that while H is discontinuous on
S(Ha®Hp) (cf. Proposition 5.6), H'* is uniformly continuous (cf. Corol-
lary 6.11). Note that in the rest of this work when talking about the BS-
conditional entropy we mean the definition in Eq. (2.3). Further we mean
Eq. (2.5) when talking about the BS-conditional mutual information and denote
it by I(A : B|C) and analogously we use I(A : B) for the BS-mutual information.
The reason for choosing the one-sided over the two-sided is that the definition

of the latter involves the BS-mutual information which has no constant upper
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bound and therefore is the more pathological quantity (cf. Proposition 5.5).

The definitions of conditional divergence, mutual information and conditional
mutual information are not new but have already appeared in some texts, such
as [15, 16, 17].
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CHAPTER 3

The ALAFF method

In this chapter, we will introduce the method that lies at the heart of our ap-
proach: The locally almost affine (ALAFF) method. It translates the joint con-
vexity and almost joint concavity of a divergence into continuity bounds for de-
rived entropic quantities of that divergence. The flow chart in Fig. 3.1, visualises
the procedure and lists entropic quantities (see Definition 2.7) for which uniform
continuity (on properly constructed sets) can be obtained. We will drop the joint
in front of convex and almost concave, for better readability respectively.

|7Proo

Uniform continuity & Continuity bounds

S

Figure 3.1: The flow chart demonstrates how convexity and almost concavity of
a divergence can be used to obtain uniform continuity and explicit continuity
bounds on entropic quantities derived from that divergence.

It is immediately clear what is meant by convexity which is often even a defin-
ing property of a divergence [18] or a direct consequence thereof! [11, Proposition
4.2|. The almost (joint) concavity, however, needs yet to be defined.

!Some authors define divergences as function on two density operators fulfilling a data

13



14 3. THE ALAFF METHOD

Definition 3.1 (Almost (joint) concavity of a divergence). A divergence D is
called almost (jointly) concave on a convex set Sy C S(H) x S(H) if, for (p1,01),
(p2,02) € So, there exists a continuous function f : [0, 1] — R with f(0) = f(1) =
0 such that, for all p € [0, 1],

D(pllo) = pD(p1llo1) + (1 = p) D(p2o2) — f(p) (3.1)

holds. Here, p = pp1 + (1 — p)p2 and o = po; + (1 — p)oa. It is important to
emphasise that f in general depends on the states involved.

Remark 3.2. We note that the definition of almost concavity presented above is
not itself a very strong property. For example, one could just choose f to be the
remainders that give equality in Eq. (3.1). It is the behaviour of the remainder
functions that is pivotal, i.e., it becomes independent of p;, 0y, i« = 1,2 under
certain restrictions on the states, e.g. requiring that o; is a marginal of p;.

Our approach, therefore, does not only need joint convexity but a well-
behaved remainder function. If we find such a function and combine it with
the boundedness of the divergence (or underlying entropic quantity), ALAFF
directly gives uniform continuity through explicit continuity bounds.

In its earliest form, it was developed and used by Alicki and Fannes [19], as
well as Winter [2], to prove uniform continuity and give an explicit continuity
bound for the conditional entropy. Shirokov noticed its potential beyond this
specific application and moulded it into a method that can be applied to functions
defined on convex and A-invariant subsets of S(#) [20, 21]. In short, A-invariance
means that for two elements their normalised positive and negative part again
lies in the set (see also Definition 3.3). This definition of A-invariance will,
however, turn out to be a limitation when trying to prove the uniform continuity
of the relative entropy, while in the case of the BS-entropy, it is unfitting even
from the beginning, i.e., even for the conditional BS-entropy. The problem is
due to A-invariance being a rather strong property that sets like S>p,(#H) or
{(p,o0) : kero C kerp} do not have. Yet, those sets, or modified versions
thereof, are the relevant sets for the relative and, in particular, the BS-entropy.

In light of those problems and in an effort to make our approach as general as
possible, we propose the almost locally affine (ALAFF) method, a generalisation
of the Alicki-Fannes-Winter-Shirokov method that reduces to one implication of
the former in a special case. First of all, we define a perturbed version of the
A-invariant subset, with the perturbation controlled by a parameter s.

Definition 3.3 (Perturbed A-invariant subset). Let s € [0,1). A subset Sy C
S(H) is called s-perturbed A-invariant, if for p,o € Sy with p # o there exists

processing inequality; however, note that convexity for a divergence implies a data processing
inequality and follows from it together with additional properties, as shown in [18, Corollary
4.7].
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7 € S(H) such that the two states
AE(p,o,7) =sT+ (1 —8)e L p—o]s (3.2)

lie again in Sy. Here € := £||p — o]|; and [A]+ denotes the negative and positive
part of a self-adjoint operator, respectively. For s = 0, we recover the definition
of A-invariant subset used in [21].

We want to give the reader some intuition about those s-perturbed A-invariant
sets.

Remark 3.4. 1. Let S C S(H) s-perturbed A-invariant. Then for ¢ € [s, 1] it
is t-perturbed A-invariant as well. In particular, being 0-perturbed is the
strongest condition.

2. If Sy € S(H) has non-empty interior with respect to the 1-norm, then it is
s-perturbed for some s € [0, 1).

3. If So € S(H) is s-perturbed A-invariant containing more than one state,
then there exist p,o € Sy with |jp — o, = 1 — s. This follows directly
from the definition.

It has already been mentioned that almost concavity is not enough but we
need a well-behaved remainder function that becomes uniform in case the states
fulfil certain structural requirements (e.g. one being a marginal of the other).
These structural restrictions lead to functions that now only take one state as
an argument while still being convex and almost concave. However, due to the
uniformity of the remainder function, the almost concavity constitutes a stronger
property. Namely almost local affinity.

Definition 3.5 (Almost locally affine (ALAFF) function). Let f be a real-valued
function on the convex set Sy C S(H), fulfilling

—ayg(p) < fpp+ (L —p)o) —pf(p) — (1 —p)f(o) < bs(p) (3.3)

for all p € [0,1] and p,o € Sp. The functions af : [0,1] = R and by : [0,1] = R
are required to vanish as p — 0T, to be non-decreasing on [0, %], continuous in p
and uniform for all p,o € Sgp. We then call f an almost locally affine (ALAFF)
function.

The notion of almost locally affine functions as above has appeared previously
in the literature, also under the name “approximate affinity" (see e.g. [22]). We
can now formulate the following theorem, whose proof is inspired by Shirokov

20].

Theorem 3.6 (Almost locally affine (ALAFF) method). Let s € [0,1) and Sy C
S(H) be a s-perturbed A-invariant conver subset of S(H) containing more than
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one element. Let further f be an ALAFF function. We then find that f is
uniformly continuous if,

Ci:i=  sup  |f(p) = flo)] < +o0.

p,0E€Sy
Lllp—oll;=1-s

In this case, we have for e € (0,1]

€ 1—s+¢ €
- < O3 Emax(f)’
s W) = o)l s O+ 5 B T (3.4)
Sllp—olly <e
with
max max E t
Efa :[0,1) = R, pHEfa(p):(l—p)max{lf_(t) : OStSp},

where Ey = ay +by. Note that on e € (0,1 —s] Ey and B coincide.

Proof. Let s € [0,1) and & € (0,1]. Let further p,o € Sy with i[|p— o, = e.
Then by the property of s-perturbed A-invariance there exists 7 € S(H) such
that v+ := A%(p,0,7) € Sy defined as in Eq. (3.2). For every such v+ with a
representation in terms of p, 0 € Sp and a 7 € S(H) we have that

1—s n IS5 1—s n €
L =w = o
l—s—i—ep 1—84—87 1—s+¢ 1—s+¢

T+

which can be easily checked by inserting the explicit form of v+ and using that
[p—oly —[p—o]- =p—0. Now w € Sy as Sp is convex, which allows us to
evaluate f at w and use Eq. (3.3) for both of the representations we have for the
state in question. This gives us

—ay(p) < f(w) = (1 =p)f(p) —pfly-) < bs(p),
—ay(p) < f(w) — (1 =p)f(o) —pfly+) < bs(p),

where we set p = —=— for better readability. Note that p € (0, 52=] C [0,1) as
1—s+e 2—s

e € (0,1] and s € [0,1) and further that p(e) is monotone with respect to . We
recombine the above to get

(1=p)(f(p) = f(0)) < p(f(v+) = F(7-)) +ar(p) + bs(p),
(1=p)(f(o) = f(p)) <p(f(y-) = F(v+)) + ap(p) + bs(p) -

Those two inequalities immediately give us that

(I =p)f(p) = f(@) < plf(v+) = f(y=)l + (ay +bf) () -

If we now insert Ky = ay + by, we obtain

<p
=p

[f(p) = flo)| < plf(y4) = F(y) I+ ——Es(p).-
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In the case that C}? is finite, we can take the supremum over all p, o € S
with 1||p — o, = € of the last equation and even extend to 3| p — o||; < € in two
steps. The first step is upper bounding ﬁE #(p) with ﬁE}na’( (p) and then using

that ﬁE}“ax(p) is engineered to be non-decreasing on [0, 1) and thereby for the

= €10, 7] C [0,1), is non-decreasing in £ as well. Since the v,
and ~y_ created from p and o obviously fulfill 7. € Sy and %H')ur -y =1-s5,
we immediately get the upper bound in Eq. (3.4). The reduction of EP* to Ef

on e € (0,1 — s] E* is due to Ey being non-decreasing on |0, 3]. This means,

however, that E’7®* inherits the vanishing property as p — +0, which translates
to £ (p(e)) — 0 if € = +0. Thus we conclude uniform continuity. O

specific p =

Remark 3.7. We have restricted to £ € (0,1] as the maximal one norm distance
of two quantum states is bounded by 2, hence there is no need to cover the case
e> 1.

Remark 3.8. For s = 0, one recovers one implication of the method by Shirokov,
max

i.e., the definitions for perturbed A-invariance and A-invariance coincide, E}
reduces to £y on the relevant domain € € [0,1], and Eq. (3.4) becomes

sup  [£(p) ~ f(o)| < Cfe+ (1+9)Br ().

p,0E€SY
Lllp=ollg<e
with
Ch= s |f(p) = f(@)l = sup |f(p)— f(o)| = CF,
P,0E€SY p,0E€SY
%HP—UH1=1 tr[po]=0

as states with maximal trace distance have orthogonal support.

In the subsequent chapters, we will use Theorem 3.6 together with the almost
concavity of the relative entropy and the BS-entropy, respectively, to derive a
plethora of results of uniform continuity and continuity bounds for related en-
tropic quantities. Depending on the case, we will sometimes have to employ the
whole machinery devised in Theorem 3.6, whereas at other times the simplifica-
tion provided in Remark 3.8 will be enough.
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CHAPTER 4

The Umegaki relative entropy

In this chapter, we apply the ALAFF method introduced in Chapter 3 for the
particular case of the relative entropy, as well as some other entropic quantities
derived from it. Since the relative entropy is in particular a divergence, it is
(jointly) convex. Thus it remains to show that this quantity satisfies proper
almost concavity. The proof of that feature, as well as the tightness of the result
obtained, is presented in Section 4.1.

The ALAFF method then yields a plethora of results of uniform continuity
for entropic quantities derived from the relative entropy. These are all presented
in Section 4.2. In particular, we recover the well-known (and almost tight) con-
tinuity bound for the conditional entropy by Winter [2].

All the results provided in this chapter are summarized in Fig. 4.1.

4.1 Almost concavity for the relative entropy

The (joint) convexity of the relative entropy is a well-established result with
proofs found for example in [24]. In this section, we complement this result with
almost concavity and further prove that the bound we obtain is tight.

Theorem 4.1 (Almost concavity of the relative entropy).
Let (p1,01), (p2,02) € Sker with

Sker :={(p,0) € S(H) x S(H) : kero C ker p}

and p € [0,1]. Then, for p=pp1 + (1 —p)p2 and o = po1 + (1 — p)oa,

D(pllo) = pD(p1l|o1) + (1 — p)D(p2llo2) — h(p)%\lm —p2lly = fere(p) - (41)

Here,
h(p) = —plog(p) — (1 — p)log(1l — p),
fer,e2(p) = plog(p + (1 —p)er) + (1 — p) log((1 — p) + pea)

19
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Theorem 4.1

Uniform continuity & Continuity bounds

Corollary 4.10 Corollary 4.7 Corollary 4.6 Cofonary 45

=EEE

Theorem 4.13 Corollary 4.8

Corollary 4.4

Figure 4.1: In this flow chart we collect the main results from this chapter,
starting with the almost concavity of the relative entropy, which together with
the ALAFF method outputs a collection of continuity bounds for related entropic
quantities. For the convexity and almost concavity, we are setting p = pp1 + (1 —
p)p2 and o = poy + (1 — p)og, with p € [0,1]. We denote by m, the minimal
non-zero eigenvalue of . The specific bounds obtained for the relative entropy
fixing the first argument and in the general case (modifying both arguments) are
omitted due to their technicality.

with the first one being binary entropy. The constants in f., ., are non-negative
real numbers and are given by

[ee)

it—1 —it—1
cl = /dtﬁo(t) tr [p1012 090, * ] < 00,

—00

oo

it—1 —it—1
Cy = /dtﬁo(t)tr |:p20'22 01049 2 :| < 0.

—0o0

Here, By is a probability density on R (see Eq. (4.4) for a concrete expression,).
It is noteworthy that fi1(-) =0 and fe, ¢,(0) = fe,,e,(1) = 0.

Proof. 1t is clear that Sye, is a convex set and that the bound holds trivially for
p=0and p=1. Hence let p € (0,1) in the following and (p1, 01), (p2,02) € Sker-
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We find that

pD(p1llo1) + (1 —p)D(pz2llo2) — D(pllo) = —pS(p1) — (1 — p)S(p2) + S(p)
+ (1 — p) tr[pz(log o — log 02)]
+ ptr[pi(logo —logoi]

1
< h(p>§Hp1 - p2H1 + f01162(p>7

where we split the relative entropies and used that the von Neumann entropy
fulfils [25, Theorem 14|

5(p) < gllor — p2llh(p) + pS(pr) + (1= p)S(p2) (12)

Furthermore, we upper bound the remaining terms by f, ¢, (p), estimating the
two separately. We will only demonstrate the derivation for the second term, as
it is completely analogous to the first one. We have

ptr[p1(log(o) —log(a1))] = ptr [exp(log(p1))(log(a) — log(a1))]

< plog tr [exp (log(p1) + log(o) — log(o1))]
(4.3)

o0
it—1 —it—1
< plog / dt Bo(t) tr [,01012 ooy ? ] .

—00

The first estimate follows immediately using the well-known Peierls-Bogolubov
inequality [7]. The second one is the inequality in Eq. (2.2) from Corollary 2.3
with H; = log p1, Ho = —logo; and Hs = logo. Note that

T 1

Bo(t) = 2 cosh(nt) £ 1° (4.4)
appearing in this inequality is a probability density on R. In the above steps, i.e.
Eq. (4.3), we relied on p1,01 and o to be full rank. If this is not the case one
obtains the same result, however, the procedure is more involved. A thorough
discussion can be found in Appendix A.1. Note here that in the most general
case -~ 1 in the RHS of Eq. (4.3) is the Moore-Penrose pseudoinverse. The trace
in the integral can now be estimated for each ¢ by

it—1 —it—1

it—1 —it—1
tr[p1012 oo, ? } =p+(1—p) tr[p1012 090, ? } . (4.5)

Here, we just split o and used the cyclicity of the trace to get rid of the unitary.
To see that ¢; < oo, we upper bound o2 by 1 and afl by ﬁL;ll 1 where my, is
the smallest non-zero eigenvalue of o;. This is valid, since ker oy C ker p;. We
end up with ¢; < m, ! < oo. Inserting Eq. (4.5) into Eq. (4.3), we obtain the
first part of f., ¢,(p) and repeating the steps for (1 — p) tr[pa(log(c) — log(c2))]
the second one as well. This concludes the proof. O
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We remark that Eq. (4.1) provides a result of almost concavity for the relative
entropy in the sense of Definition 3.1. Indeed, the additive “correction” term
obtained behaves well enough, in the sense that it reduces to the previously known
bounds for quantities derived from the relative entropy, e.g. the von Neumann
entropy or the conditional entropy, and it is almost tight in general. To illustrate
that, we provide now two propositions that put the almost concavity of the
relative entropy into perspective.

Proposition 4.2 (Almost concavity estimate of the relative entropy is well be-
haved).

The function f., c,+h3|lp1 — p2||; obtained in Theorem 4.1 is well behaved in the
following sense: Let j = 1,2 and (pj,0;) € Sker- We have the following:

1. If o1 = 02, then c¢1 = co = 1, resulting in fe, c, + %le — p2llh < h.

2. If each oj, has a minimal non-zero eigenvalue that is bounded from below
by some m > 0, then fe, c, + h3llp1 — p2ll; < fa-1.5-1 + B

3. If H=Ha®Hp is a bipartite space and furthermore o; = d;l 14®p;B;
then f01,82 =+ h%le - :02”1 < h.

4. For my,ms > 1 we find that both p — ﬁfmth (p) and p — ﬁh(p) are
non-decreasing on [0, 1).

Finally, before using these results of almost concavity for the relative entropy
jointly with the ALAFF method to provide some continuity bounds for the rela-
tive entropy and derived quantities, we conclude this section with some discussion
of our almost concave bound. In Proposition 4.2, we have shown that our almost
concave bound is well behaved in the sense that, in some specific cases, it is
independent of the states. However, we can additionally show that it is tight,
meaning there exist states that saturate the inequality in Eq. (4.1).

Proposition 4.3 (Almost concavity estimate of the relative entropy is tight).
The bound presented in Theorem 4.1 is tight. More specifically, there are some
density operators pi, p2, 01,02 on S(H) which saturate the inequality in Eq. (4.1).

Proof. We can assume that the dimension of the underlying Hilbert space is
dy > 2. We then find two orthonormal states |0),|1) € H that we use to create

p1 = |0X0[,
p2 = |1)1],
o1 := t[0X0] + (1 — ) [1)(1],
oz := (1 =) [0)0] + ¢ [1)(1],
for t € (0,1). We find, as of the orthonormality, that for p € [0, 1] and

p:=pp1+(1—p)p2,
o :=po1+ (1 —p)os,
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the relative entropy between the states given by the convex combinations evalu-
ates to

D(pl|o) = tr[plog(p) — plog(o)]
= —h(p) — plog(pt + (1 —p)(1 —¢)) — (1 — p) log((1 — p)t + p(1 — ¢)),

and
D(p1l|or) = —log(t) ,

D(pzllo2) = —log(t).

This gives us

pD(p1llo1) + (1 = p)D(p2llo2) — D(pllo)

1-1¢ 1-1¢
= h(p) +plog (p +(1 —p)T) +(1—p)log ((1 —p) +p7) :

(4.6)
As [pj,04] =0 for 4, j = 1,2 and further [p;o;,0;] = 0 we find that the constants
in Theorem 4.1 are given by

_ 1-1¢
c; = tr [piai 10']'] = T

for i,j = 1,2 and i # j. Finally since p; and py orthogonal we get %le —p2lly =
1. We hence obtain the RHS of Eq. (4.6) from the almost concavity estimate in
Eq. (4.1). This concludes the claim. O

4.2 Continuity bounds for the relative entropy

In this section we will harvest the fruits of our work and prove a number of
corollaries that are direct consequences of the results of almost concavity in The-
orem 4.1 and Proposition 4.2 in combination with the results in Theorem 3.6 and
Remark 3.8. All of them concern quantities which are derived from the relative
entropy.

4.2.1 Uniform continuity for the conditional entropy

Let us first consider a bipartite space and the conditional entropy of a state with
respect to one of the subsystems. Note that, in this case, we are able to prove
a result of uniform continuity for any positive semidefinite state, but we do not
require positive definiteness. This should be compared to the findings of the sub-
sequent chapter for the BS-entropy and derived quantities, where discontinuities
appear with vanishing eigenvalues.
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Corollary 4.4 (Uniform continuity of the conditional entropy).

The conditional entropy over the bipartite Hilbert space H = Ha Q@ Hp is uni-
formly continuous on Sy = S(H) and for p,o € Sy with %HP —ol; <e <1, it
holds that

|H,(A|B) — H,(A|B)| < 2elogda + (1 + z-:)h(l i 6) .

Proof. First of all, Sy is clearly O-perturbed A-invariant. Setting f(-) = H.(A|B),
we find that it is ALAFF with ay = 0 as H.(A|B) is concave, and by = h since
the result in Theorem 4.1 becomes independent of the states as we go to H.(A|B)
using point 3 of Proposition 4.2. Finally, we find that

Cp = sup [Hy(A|B) = Hy(A|B)| < 2logda,
p,0ESy
tr[po]=0

where we used —logdx < H.(X|Y) < logdx shown, for example, in [24]. Using
Theorem 3.6 in the form of Remark 3.8, we can infer the claimed continuity
bound. O

As we have already mentioned, this coincides with the result of Winter [2],
which proved to be almost tight.

4.2.2 Uniform continuity for the mutual information

The previous result can now be easily adapted to the mutual information. Indeed,
as the mutual information can be obtained from a conditional entropy and a von
Neumann entropy, a continuity bound for the former in terms of those for the
latter quantities is a direct consequence.

Corollary 4.5 (Continuity bound for the mutual information).
The mutual information on a bipartite Hilbert space H = Ha Q@ Hp is uniformly
continuous on Sy = S(H) and for p,o € Sy with §|p — o||; < e <1, we find that

|I,(A:B)—1,(A: B)| <2clogmin{da,dp} + 2(1 + E)h<1i+€) .

Proof. First of all, Sy is clearly O-perturbed A-invariant. With f(-) = I.(A: B) =
S(-a) — H.(A|B) one can immediately conclude almost local affinity of I.(A : B)
as S(-4) is concave and fulfills Eq. (4.2) and —H.(A|B) is almost locally affine
with a_g 4By = 0 and b_g (4;p) = h. Combined we get for f(-) = [.(A : B),
ay = h and by = h. We further have that

C’f = sup [[,(A:B)—1,(A:B)| <supl,(A:B) < 2logmin{da,dp},

p,TES) PESH
tr[po]=0
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where we used that 0 < I.(A : B) and I.(A : B) < 2logmin{da,dp} [24].
Applying Theorem 3.6 in the form of Remark 3.8, we can conclude the claim and
obtain the given continuity bound. O

This bound also coincides with the tightest previously-known continuity bound
for the mutual information (see e.g. [20]).

4.2.3 Uniform continuity for the conditional mutual information

Next, we use again a similar approach to derive the result for the conditional
mutual information. Note that this can be done by viewing the conditional
mutual information as the difference between two mutual informations.

Corollary 4.6 (Uniform continuity of the conditional mutual information).
The conditional mutual information with respect to H = Ha Q@ Hp @ Ho is uni-
formly continuous on Sy = S(H) and for p,o € Sy with §|p—of, <e <1, we
find that

|I,(A: B|C) —I;(A: B|C)| < 2elogmin{da,dp} + 2(1 +5)h(1 —T—E) :

Proof. The procedure is now familiar. We first note that Sy is O-perturbed A-
invariant. Without loss of generality, we can assume that d4 < dp and rewrite
f(-) =1(A: B|C) = H(A|BC) — H.(A|C). With this representation, we can
immediately conclude that I.(A : B|C) is ALAFF with ay = h and by = h.
Finally, we have that

ij‘ = sup |[,(A:B|C)—-I,(A:B|C)|
Lo

< sup I,(A: B|C)
PESo

= sup H,(A|BC) — H,(A|C)
PESo

< 2logdy = 2logmin{da,dp},

as the conditional mutual information is non-negative and again —logdyx <
H.(X|Y) < logdx. Using Theorem 3.6 in the form of Remark 3.8, we can
conclude the claim and obtain the given continuity bound. O

This continuity bound for the conditional mutual information also coincides
with the best previously-known continuity bound for the named quantity (see
e.g. [26, Lemma 4|).
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4.2.4 Divergence bounds for the relative entropy

In this section, we prove an upper bound on the relative entropy D(p||o) which
involves the trace norm distance of p and o. The literature calls these bounds
upper continuity bounds [27, 28, 29|; however, we consider this name to be a
bit misleading since the bound involves p and o. For a continuity bound, we
would expect an upper bound of |D(p1ljo1) — D(pz2||o2)| in terms of the norm
distance of p; and po, and o1 and o9, respectively. We hence propose the name
“divergence bound” for this kind of bound, to prevent confusion with the result in
Section 4.2.5. This name is fitting, since we are relating the strength of divergence
(between p and o) to a fixed norm distance (the one norm).

We now give the divergence bound we obtain when using the convexity and
almost concavity of D(p||o) together with Theorem 3.6 by going through uniform
continuity of the relative entropy in its first argument.

Corollary 4.7 (Uniform continuity of the relative entropy in the first argument).
Let 0 € S(H) be fized. Then D(-||o) is uniformly continuous on Sy = {p €
S(H) : kero C kerp} and, for pi,p2 € So with L||p1 — pall; < e < 1, it holds
that

_ < m ! PR
|D(p1llo) — D(p2||o)| < elogm, +<1+5)h<1+a>’

with my the minimal non-zero eigenvalue of o.

Proof. Sy is clearly convex and 0-perturbed A-invariant as for two operators A, B,
ker ANker B C ker(A — B) and [A — B|+ are orthogonal. We set f(-) = D(:||0).
Using Theorem 4.1 and point 1 of Proposition 4.2, we find that D(:|l0) is ALAFF
with ay = h and by = 0. At last, we have that

Cy = sup  |D(pillo) = D(p2llo)| < sup D(pllo) <logm,".
P1,P2€S50 pES(H)
Sllp1—p2ll=0

In the first inequality, we used that D(p|lc) > 0, and in the second one that
mep < o hence D(pllo) < logm . Using Theorem 3.6 in the form of Remark 3.8
concludes the claim. O

We can subsequently use the Corollary 4.7 to prove a divergence bound for
the relative entropy.

Corollary 4.8 (Divergence bound for the relative entropy).
Let p,o € S(H) with kero C ker p and §||p — o, < e <1, we have

D <clogigt + (1+e)h(——).
(pllo) < elog i, + (1 +)h( )

with my the minimal non-zero eigenvalue of o.
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Proof. In the context of Corollary 4.7, we just set p1 = p and p2 = o, giving
us that 3|\p1 — p2|l; = 3llp — oll; < e < 1. Furthermore, D(ps|lo) = D(o|jo) =
0 and |D(p1]|o)| loses the absolute value, as D(:||-) > 0. The bound follows
immediately. O

Remark 4.9. For a better understanding of the dependence of the previous diver-
gence bound in terms of €, we can use the following inequality:

(1+e)h(——) < V2,
1+¢
jointly with the fact that e < (/e for any € € [0, 1]. Therefore, we obtain

10g771;1 1/2
Dipllo) < (1+ 252 I - olli"*.

V2
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(a) The magnitude of the different bounds (b) The difference between the bound from

plotted over the relative entropy. We sam- Corollary 4.8 and the one of Audenaert &

pled thousand different pairs of qubits and Eisert [30, Theorem 1]. On the x-axis we

controlled the minimal eigenvalue of ¢ in plot the minimal eigenvalue of o and on the

a range from 107* to 1078, The explicit y-axis ¢ = %||p — o||,. The minimal eigen-

bounds can be found in Table 4.1. value of p is set to the minimal eigenvalue
of sigma, thereby strengthening the bound
of Audenaert & Eisert. Both were varied
between 10720 and %

Figure 4.2: Two plots comparing the divergence bounds from Table 4.1.

Some bounds for the relative entropy between two density operators in a
similar direction as ours have previously appeared in the literature. In particular,
in [31, 29|, the authors present some linear bounds for the relative entropy in
terms of the trace norm difference between those states, with some multiplicative
factors depending on the eigenvalues of the states involved, whereas in [32]| a
similar bound is provided in terms of the operator norm of the difference between
the states. One of the bounds in [31] is further generalised in [30] and is closely
related to our bound as both of them are non-linear in the trace norm (resp.
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operator norm) difference between the involved states, and show a dependence
on the inverse of the minimal eigenvalue of ¢ only logarithmically. This is partly
an advantage over the bounds in [32, 29]. In Table 4.1 and Fig. 4.2 we compare
the aforementioned bounds from [30, 32, 29]. From Fig. 4.2a it is clear that our
bound, in the majority of the cases, outperforms the bound by Vershynina and
the one by Bratteli & Robinson. This is because of the logarithmic scaling with
the inverse minimal eigenvalue of ¢ of our bound versus the linear scaling with
the inverse minimal eigenvalue of o of theirs. We hence reduce the discussion
to a comparison between Audenaert & Eisert’s and our bound. From the first
Fig. 4.2a and second plot Fig. 4.2b we conclude a slight advantage of theirs. The
numerical experiments suggest, however, that the difference between both bounds
is bounded by two, hence as the minimal eigenvalue decreases both bounds should
converge asymptotically. Furthermore, our bound has the advantage that it does
not need ¢ nor p to be full rank. This fact and its simple representation might
give some advantages in applications.

Bound by not not Bound on D(p||o)
full rank p full rank o
Corollary 4.8 v v clogmyt + (14 )k (15)
Audenaert & Fisert
[30, Theorem 1] v x (m+ 10w (5755 o (%5)
Vershynina log s —log
[2 9] X X QEAPW
Bratteli &
Robinson X X mZ e — olla
32)

Table 4.1: A comparison of different divergence bounds. Here e = 3| p — o||; and
m. and m. are the minimal and the minimal non-zero eigenvalue of the quantum
state in the index, respectively. Further ), is the maximal eigenvalue of p. The
bound of Audenaert & Eisert in the case m, = 0 has to be understood as the
limit m, — +0.

4.2.5 Continuity bounds for the relative entropy

We conclude this chapter with the most involved continuity bound until now. It
concerns the relative entropy and regards it in all its power as a function of two
variables, i.e., it constitutes a continuity bound both for the first and the second
input of the relative entropy simultaneously. This presents some challenges that
need to be dealt with, as the relative entropy presents problems of discontinuity
whenever the kernel of the second input is not contained in that of the first
one. To overcome these issues, we need to employ the ALAFF method in its full
generality.
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In the first step, we fix the first input of the relative entropy and provide a
continuity bound for the relative entropy in the second argument.

Corollary 4.10 (Uniform continuity of the relative entropy in the second argu-
ment).
Let p € S(H) be fized and 1 > m > 0. Then, D(p||-) is uniformly continuous on

Sp:={0€S(H) : kero Ckerp, mp<o}.
We further get that, for oq,09 € Sy with %Hffl — o3|l <e,

lm+€

D(pllon) = Diplloa)| < ~los(m ™) + P fro s () (4D

I+ €

I

where l; =1 —m.

Proof. We have that Sy is clearly convex as, for 01,09 € Sp and A € [0, 1],
Ao+ (1= X)og > dmp + (1 — N)mp = mp,

giving the kernel inclusion as well as the condition for the smallest eigenvalue
on the support of p. Furthermore, Sy is s-perturbed A-invariant with s = m.
This is because one can just perturb with 7 = p and get the kernel inclusion as
well as the minorization by mp. Employing point 2 of Proposition 4.2 we further
get that f(-) = D(p|-) satisfies Eq. (3.3) with by = 0 and ay = fz-1 -1, hence
Ef = fs-1-1 , and using again Proposition 4.2 (point 4, since m < 1) we find
By = Jwm—1m-1. At last, we have that

cp = sup |D(pllo1) — D(pllo2)|
01,02€S8)
Llor—oaly=1-m

< sup D(pl|o)
oE€Sy
<log(m™),

where we used that D(p||-) > 0 and for the last inequality that mp < o for
all 0 € §y. Employing now Theorem 3.6 we obtain uniform continuity and the
claimed continuity bound. O

Remark 4.11. The continuity bound obtained in the previous corollary is rela-
tively involved. For a better understanding of its behaviour, let us remark that
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we can bound the last term of Eq. (4.7) in the following form:!

lm + € !

€ >< 2log?m~
mtTel

fmfl,m71<l Ve,

I I

ifm < % Noticing now that ¢ < /e for any ¢ € [0, 1], and replacing 7 = 1 — m,
we obtain the following modified continuity bound for the relative entropy in the
second argument:

3log?m !

1—m

[D(pllor) = D(pllo2)| < Ve.

In the above corollary, two choices need some more justification. The first
choice is 1 > m and the second one s = m. We want to put them into context by
the following proposition, demonstrating that these assumptions are necessary to
obtain a non-trivial Sy.

Lemma 4.12. Let p € S(H) with rank p > 2, further m € (0,00) and
Sop:={0c€S(H) : kero Ckerp, mp<o}.

Then, the following is true:

1. If 1 > m, then Sy is s-perturbed A-invariant if and only if s > m.
2. If 1 =m, then Sp = {p}.

3. If1 <m, So = 0.

We will only give proof for the first one in Appendix A.3 and leave the last
two for the reader. Next, we proceed to state and prove the main result of this
subsection on continuity bounds, namely the uniform continuity for the relative
entropy on suitable pairs of states. Since we have already explored the cases in
which we either fix the second (Corollary 4.10) or first (Corollary 4.7) density
operator, we now combine both results in the proof of the next theorem.

Theorem 4.13 (Uniform continuity of the relative entropy).
Let1>2m >0 and

So=A{(p,0) : p,o e S(H), kera C kerp, 2m < m,},

'This bound can be easily checked by noticing that the function g : (0,1) x (0,1) — R given
by

. 2 -1 1-my _ € _ _
g(m,e) :=2log°m™ e Elog(a—i—T) (1—m)log (1 WH_E)—’_(I m+e)log(l —m+¢)

is monotonically increasing in ¢ and decreasing in m. As we are interested in m < 1/2 it is
enough to study the case g(1/2,¢), for € € (0,1). It is not difficult to check that lirr(l] g(1/2,¢) >
e—

0.
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with My the minimal non-zero eigenvalue of o. Then, D(:||-) is uniformly con-
tinuous on Sy and we find that for (p1,01), (p2,02) € So with [|p1 — p2| <e <1
and |joy —oafl; <6 <1

J _
[D(p1llo1) — D(p2lo2)| < (e + lj) log (") + (1 + 5)/1(%)
3 )
2lm—|—(5 o o) :
+ lfﬁ fmfl,m*1<lﬁl+5>a

with 1z = 1 — .

Proof. We will prove the uniform continuity by proving that the bound Eq. (4.8)
holds. Therefore, let (p1,01),(p2,02) € Sy with %le —po|l < e <1 and
llor — o2 <6 < 1. We define

1 1
o= 50’1 + 50’2, (49)
and obtain
1. 1 1)
§||U— o1ll, = ZHUl —oaf; < 3 <1,
1 1 1)
§||0— o2ll, = ZHUl —oafl; < B <1

Using this, we get
|D(p1llor) — D(pzllo2)| < |D(pillor) = D(pil[a)| + [D(prl[a) — D(pz2l|o)]
+[D(p2[7) — D(p2llo2)] -

The middle term can be bounded using Corollary 4.7 and the fact that

log ' < max{log(2m,),log(2m,})} < logm .

One obtains

7) — 7| < M1 _c).
[D(p1][7) = D(palf?)| < clog " + (1 +e)h ()

The other two terms are bounded using Corollary 4.10 and the fact that mp; <
%01 < @ and mpy < %02 < T by construction of Sy and the definition of &,
respectively. We therefore obtain

5 ~ l= + 2715 271§
D —D(pyll7)] < —1 “yym?*t=2 T (2
|D(p1l|o1) — D(pallo)| < o og(m™') + I fa1m 1<lm+2‘15>’
5 _ l- + 2715 21§
D(ps|l5) — D < ] -y mTe 9 '
D(pall7) = Dlpalloa)| < 5 Tos( ™) + = farer1 (=55

Combining the bounds and point 2 of Proposition 4.2, as m < 1 and further
using that

stﬁ“ﬁl<zmi_125—la> = lﬁz;(sfﬁlvﬁl(zmi(s) ’

we obtain the claimed bound, and thereby also uniform continuity. O
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Similarly to the discussion of Remark 4.11, we can further simplify the latter
continuity bound as we show below.

Remark 4.14. The continuity bound for the relative entropy from Theorem 4.13
can be simplified by bounding the terms involved. For m < % on the one side,

we have )

lj + 6 0 4log? m~
2 1 ( ) < 5.

lffL fm 17m 1 lffL +6 — l/ffL f
whereas, on the other side, we can bound the binary entropy term using

(1 —i—a)h(%ﬂ) < V2.

Using these inequalities, jointly with the fact that €,d € (0, 1], and thus € < /e
and § < V6, as well as replacing I3 = 1 — m, we obtain the following simplified
continuity bound for the relative entropy:

log m~! 1/2 5} 10g2 m~! 1/2
D o1)—D o9)| < (1—}—7) - +————lo1—0 .
ID(prllor) ~ Dipallo) e L e |

(4.10)

Let us conclude this section by emphasizing that there might be some room for
improvement in the previous result. For instance, it might be possible to improve
the interpolation between o and o9 considered in Eq. (4.9) by optimizing over
some probabilities p and 1 — p associated to o1 and o9, respectively, instead of
just assigning both probability 1/2. However, we believe this would not change
the appearance of the bound drastically and thus the reason for not performing
this optimization.



CHAPTER 5

The Belavkin-Staszewski entropy

Following the same lines as in the previous chapter, we deploy the ALAFF method
introduced in Chapter 3 to the particular case of the BS-entropy. For that, we
need to prove a result of almost concavity, which is presented in Section 5.1.
However, in contrast to the case of the relative entropy, our result for the BS-
entropy is not tight. We leave the discussion of the bound and the difficulties
that arise in the BS-entropy case for the next section.

Subsequently, we combine our result of almost concavity for the BS-entropy
with the ALAFF method to provide certain results of uniform continuity and ex-
plicit continuity bounds for entropic quantities constructed from the BS-entropy
in Definition 2.7. All the continuity bounds obtained in this section are summa-
rized in Fig. 5.1.

5.1 Almost concavity for the BS-entropy

In this section we prove the almost concavity of the BS-entropy and thereby
complement the established result of convexity [33, Theorem 4.4], [18, Corollary
4.7). We first need to give some auxiliary results that are necessary to proceed.
The first of these auxiliary results is an operator inequality for the term inside
the trace in the definition of the BS-entropy.

Lemma 5.1. Let Ay, Ao € B(H) positive semi-definite, p € [0, 1] and
A=pAi+ (1 —-p)As.
Then
— Alog(A) < —pAilog(Ar) — (1 — p)Azlog(Az) + ha, 4, (p) T,

with ha, a,(p) = —plog(p) tr[A1] — (1 — p)log(1 — p) tr[As] the distorted binary
entropy.

33
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Unlform continuity & Continuity bounds

Corollary 5.12 Corollary 5.10 Corollaly 5.8 Corollary 5.7

Corollary 5.13

Figure 5.1: In this flow chart we collect the main results from this chapter,
starting with the almost concavity for the BS-entropy, which together with the
ALAFF method outputs a plethora of continuity bounds for entropic quantities.
For the convexity and almost concavity of the BS-entropy we are setting p =
pp1 + (1 —p)p2 and o = poy + (1 — p)og, with p € [0,1]. We denote by m, the
minimal eigenvalue of ¢. In the almost concavity bound, ¢g is the maximum of
Hal_ ! Hoo and ||02_ ! ||<>o Additionally, we assume in all the continuity bounds that

m < [[n~t| .. for n =0, p.

Proof. 1t holds that

—Alog(A) + pA;ilog(Ar) + (1 — p) Az log(As)

< ||~ Alog(4) + pArTog(A)) + (1 — ) Aslog(A), 1. Y
Now, since x — —xz log(x) is operator concave |3, Theorem 2.6], we have
— Alog(A) > —pAylog(Ar) — (1 — p)Azlog(42),
giving us that
— Alog(A) + pAilog(Ar) + (1 — p)Azlog(As) > 0,
and hence
|—Alog(A) + pAilog(A1) + (1 — p) Az log(A2)||; (5.2)

= tr[—Alog(A) + pAilog(A1) + (1 — p) Az log(A2)].
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We now use operator monotonicity of the logarithm to find

— tr[Alog(A)] = —ptr[A1log(A)] — (1 — p) tr[A2 log(A)]
< —ptr[A;log(pA1)] — (1 — p) tr[Azlog((1 — p)As)]
= —ptr[A;log(A1)] — (1 — p) tr[Az log(Az2)] + hay 4, (p) -

Inserting this into Eq. (5.2) and then into Eq. (5.1) yields the claimed result. [J
The next auxiliary result concerns an equivalent formulation for the BS-
entropy constructed from the function z — xlogx and has already appeared

in the literature (see e.g. [34, Eq. (7.35)]). We include here a short proof of this
result for completeness.

Lemma 5.2. Let p € S(H) and 0 € S4(H), then

D(p|lo) = tr [0(071/2/)(7*1/2)log(ail/Zpafl/Qﬂ .

Proof.

D(pllo) = tr|plog 20 p112)]
— tr _log<p1/20_1/20_1/2p1/2)p1/2a_1/201/2p1/2}
— tr _p1/20_71/2 log<a’1/2pa*1/2) 01/2/)1/2)}

= tr :0(0_—1/2p0—1/2) log <0_1/2p0_1/2)} .

We used the cyclicity of the trace several times, and further, the fact that we have
f(L*L)L* = L*f(LL*) in case the spectrum of L*L and LL* lie in the domain
of f [35, Lemma 61.]. O

Building on the previous results from this section, we proceed to prove now
the main result, namely the almost concavity for the BS-entropy, in the line of
results of almost concavity discussed in Definition 3.1.

Theorem 5.3 (Almost concavity of the BS-entropy).
Let <p17 01)7 (P2, 02) € Sker,Jr with

Sters = 1(p,0) € S(H) x SH) + 7 € S, (H))
and p € [0,1]. Then, for p=pp1 + (1 — p)p2, 0 = po1 + (1 — p)oa, we have

D(pllo) = pD(p1llo1) + (1 = p) D(p2llo2) = eo(1 = 81 )h(p) = fer.c(P)



36 5. THE BELAVKIN-STASZEWSKI ENTROPY

with
h(p) = —plog(p) — (1 —p)log(1l —p),
fer,e,(p) = plog(p + ¢1(1 —p)) + (1 —p) log((1 — p) + ¢2p) ,

L if p1=p2
59192 = . )

0 otherwise

and the constants

Co = maX{HUfIH _IH

7 _ _ —it+1
& = / atBo(t) tr o1 (o1 2o o}/ H oy P aapy P (01 Por o) T
J (5.3)
Gy = / dBo(t) tr | pa(py 203 o) 5 0y Py oy oy ey ) T

—0o0

with the probability density [y defined as in Eq. (4.4).

Proof. The formula for p = 0,1 is trivial, hence let p € (0,1). We find that

pD(pillo1) + (1 = p)D(p2)lo2) — D(pllo)
< p(D(p1]|o1) — D(p1l|o)) + (1 — p)(D(palloa) — D(pallo)) + éoh(p).

Indeed, as of Lemma 5.2 and then Lemma 5.1 with A; = 0_1/2p10_1/2, Ay =

0_1/2,020_1/2 respectively, we can prove

“D(p|lo) = tr [0 (—U*Wpa*l/? 1og(a*1/2pa*1/2))}
< ptr [a (—0—1/%10—1/2 1og(a—1/2pla—1/2))}
+(1=p)tr[o (=07 2p0 2 log (07 2001 2) )| + gy, ()
= —pD(pillo) — (1 = p)D(palo) + ha, 1, (p) -
At last we can estimate tr[A;] = tr[o " p;] < |07t < é for j = 1,2 using
Holder’s inequality, giving us ha, 4,(p) < coh(p).

Now we are left with terms of the form D(p]Ha]) (ijO') for j =1,2. To
estimate those we use the Peierls-Bogolubov inequality [7] and Eq. (2.2) from
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Corollary 2.3 analagous to the case of the relative entropy:

Bpjlloy) ~ Dipsllo) = tr[p; (100} %o 0% ~ log () %0 1/%))]
<tr[exp(10g (p;) +10g<Pg/ ‘1/’31/2) log( i’ 1’);/2))]
(

[exp log(p;) + 10g<pj/2 i pj/2) + 10g<pj_1/20pj_1/2>>}

_ at+1 _ _ —it41
< log< / dt B (t) tr [p](pm o; 1pj1/2) o] 1/20pj 1/2(pj1/20j 1p;/2) t D

—00

| /\

_ {log(p+ (1-pl&r) j=
log((1—p) +p&) j=2

In the third line, we use that

1og( 1/2 _1p 1/2 ) <o g( -1/2 ,0]_1/2)

which is true since for P, the projection on the support of p, we have

P,(PyoP,) 'P,< P,o 'P,,
as * — 2! is operator convex and hence fulfills the Sherman-Davis inequality
[3, Theorem 4.19]. Note that o is invertible and that by (P,0P,)~! we mean the
Moore-Penrose pseudoinverse. We find

10g< 1/2 _1p;/2) log( V2p 5P, 1/2)
log( 1/2 P,(P,oP,)~ P 1/2)
log( /PO'P 71/2)

-1/2  —1/2
:log<pj Y op; / ) .
The argument why Eq. (5.4) holds in the case of p; not being full rank is simpler
than in the case of the corresponding inequality for the relative entropy (cf.
Theorem 4.1 and Appendix A.1). For the BS-entropy, we can already restrict

Eq. (5.4) to the support of p; as all operators involved, p;, ,ojl/2 J_lp;/Q and

p;/za_lp}m, commute with the projection onto the support of p;.

In the last step we split o and evaluated the first term to p in case j = 1
or the second term in case j = 2 to (1 — p) and left the other one untouched,
respectively. This concludes the proof. O

We strongly suspect that Theorem 5.3 can be improved because of two ar-
guments. The first one is that we would expect the results of almost concavity
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of the relative and the BS-entropy to coincide if the involved states commute.
That is because then the involved states are classical and both quantities coincide
with the Kullback-Leibler divergence. A straightforward calculation shows that
in that then ¢; = ¢; and é = c2, hence f., c, = fé, .2, , but h < éoh with equality
if, and only if, o1 and o9 are pure, which is generally not the case.

The other reason is given by the bounds we obtain for the BS-conditional en-
tropy in Proposition 5.5, which show that there is no dependence on the minimal
eigenvalue if the state o is full rank (The full rank requirement is necessary, how-
ever, as we will show in Proposition 5.6). Hence we would also suspect that an
optimal bound would be eigenvalue independent in the case of the BS-conditional
entropy.

As in the case of the relative entropy we provide an additional proposition to
give context to the above result, i.e. to provide simpler expressions if we make
structural restrictions to the set of allowed states.

Proposition 5.4 (Almost concavity estimate of the BS-entropy is well behaved).
The function coh+ f¢ ¢, obtained in Theorem 5.3 is well behaved in the following
sense: Let j = 1,2 and (pj,0;) € Sker,+. We have the following:

1. If o1 = o2, then ¢; = 1, resulting in fa &, + Coh = coh.

2. If the o; have a minimal eigenvalue that is bounded from below by m > 0
respectively, then fe o, + Coh < f-1 -1 + m~h.

3. If H=Ha®Hp is a bipartite space, p; has a minimal eigenvalue bounded
from below by m > 0, and further o; = d;ll 14 ®pj B, then fe o0 + coh <
fm717m71 +m~1h.

4. We find that for my,ms > 1, p — ﬁfmwm(p) and p — -

non-decreasing on [0, 1).

¢oh(p) are

This result should be compared to Proposition 4.2, its analogue for the rela-
tive entropy. The proof can be found in Appendix B.1. We will use the reductions
from Proposition 5.4 to simplify the terms in Theorem 5.3 for the various appli-
cations presented in the subsequent section.

5.2 Continuity bounds for the BS-entropy

In this section, we will use the almost concavity for the BS-entropy from The-
orem 5.3 together with the ALAFF method in its full generality, Theorem 3.6,
as well as the reduction of the correction terms from Proposition 5.4, to prove
a collection of results of continuity bounds for entropic quantities derived from
the BS-entropy. However, as we will show in the next pages, these bounds are
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generally more involved than in the analogous case for the relative entropy, both
in their forms as well as in their proofs. In particular, all of them depend in one
way or another on the minimal eigenvalue of the second input in the BS-entropy.
The reason for this apparent caveat will become clear in the next few subsections,
where we discuss the discontinuities present in the BS-entropy.

Beforehand, we need to collect some lower and upper estimates of certain
entropic quantities derived from the BS-entropy (see Definition 2.7 and the fol-
lowing for the definitions).

Proposition 5.5 (Bounds on BS-entropic quantities).
For pe S(Ha®HBg), we find:

1. For the BS-conditional entropy:
—logmin{da,dp} < H,(A|B) <logd. . (5.5)

2. For the BS-mutual information:
0< fp(A : B) <logmin{da,dp} + logmin{szle, Hpngm}, (5.6)
with -~ the Moore-Penrose pseudoinverse.
3. For pe S(Ha®Hp®Hc), for the BS-conditional mutual information:
0 < I,(A: B|C) < min{log d%,log dapc} .

The two first bounds are shown to be tight. For the third one, we expect that
similar reasoning should also show its tightness.

The proof can be found in Appendix B.2. We further want to remark that
the scaling of the bound with respect to the minimal non-zero eigenvalue of p4
or pp is justified. The reasoning can be found in Appendix B.2 as well.

5.2.1 Uniform continuity for the BS-conditional entropy

The case of the BS-conditional entropy is more involved than the one of the
conditional entropy that we have covered in Corollary 4.4. This is because the
almost concave bound of the BS-entropy depends on the minimal eigenvalue of the
second argument (see Eq. (5.3)), hence we need to require the second argument
to be full rank, which in the case of the BS-conditional entropy means we have to
require the argument to be full rank as well. Although we think that the result
of almost concavity for the BS-entropy can be improved, we know that there is
no extension of uniform continuity nor continuity for the BS-conditional entropy
to positive semi-definite states, as this quantity is not continuous on those. This
is the content of the next proposition. We also refer the reader to [36, Remark
3.3] for a similar behaviour of the sharp quantum Rényi divergences.
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Proposition 5.6 (Discontinuity of the BS-conditional entropy on positive semi-def-
inite states).

The BS-conditional entropy is discontinuous on the set of positive semi-definite
operators over Ha Q@ Hp if da,dp > 2.

Proof. Since dg > 2 as well as dp > 2, we find orthogonal |i4) € Ha, |ip) € Hp,
i=0,1. For € € (0,1) we then define

les) = V1 —¢|0B) +Velp),

which is clearly normalised. Furthermore,
1
po = 5(104)X04] +[LaX1a]) ® [08X05] ,

1 1
pe = 5 104X0a] ® [08)05] + 5 [1aX1a| @ lep)en]

The above are states and further fulfil

oo = pelly = g I1LaX1al © (05)X05] ~ en)en Dy
= 2 1105Y05] ~ len)eslll, = vE.

To see the last equality, we can identify the subspace spanned by |0g) and |1p)
with C? and then get that

05081 = (5 ) and feaeal > (A VL) 6

(5.7)

VeVl —e €

Calculating the eigenvalues of the difference and taking the sum of their absolute
value gives 24/¢ and thereby Eq. (5.7). Since clearly [p1,1®tra[p1]] = 0, the
BS-conditional and conditional entropy coincide and we find

Hyy(A|B) = da tr[|05)05| log [05)05]
1 1
11| 3004001 + [L4XLl) @ 050l 08 5(104K04] + 1LaX1aD 021051
=0-—lo 1 log 2
= g5 =082,
The result for p. cannot be calculated so easily. We find that

A, (A1B) = § tr 105051 g (1054051 (e)es] + 105X05]) " 10540512

+ 5[ leseslon (ea)enl (ea)en] +105Y05l) " lendenl )]

— DN

= 7]0gtr[|03><03‘ (‘€B><€B| + |OB><OBD71]

[\

+ %logtr“zsg)(&‘B\ (lesXen| + 0B)0B]) '],
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where in the first equality we used that |0)X0g| |1p)X1g| = |15)X15]|05)X0g| =0
and in the second equality that |eg)ep| and |0p)0p| are rank-one projections.
We find, using again the matrix representation in Eq. (5.8), that

1 e—1
(leBXes| +108)X05]) " — ( 1 @JE) :
Vi ¢

By forming matrix products and calculating the trace, we can immediately con-
clude that .

tr[les)Xenl (lepXenl + 08)X05) 7] =1,

tr[|05)05| (lesXen| + 105)0B)) '] = 1.

If we insert this into Eq. (5.9), we find prE (A|B) = 0. O

The author would like to thank Peter Brown for the above counterexample.
It shows in particular that we could only expect to be able to prove uniform
continuity for the BS-conditional entropy for full-rank states. The presence of
the minimal eigenvalue of the states in the continuity bound provided below for
the BS-conditional entropy is thus not surprising.

Corollary 5.7 (Uniform continuity of the BS-conditional entropy).

The BS-conditional entropy over the bipartite Hilbert space H = Ha Q@ Hp is for
d;{l > m > 0 uniformly continuous on Sy = S>m(H) and for p,o € Sy with
sllp—oll; <& <1t holds that

Iy, + €

Im

|H,(A|B) — Hy(A|B)| < 2l,,'elog da +

(fn-1m—1 + mAh)(ﬁ) :

with Ly, = 1 — dym.

Proof. We find that Sy is s-perturbed A-invariant with s = mdy. The justi-
fication of this choice is completely analogous to the reasoning in Lemma 4.12
with p = d;{l 1, i.e. the maximally mixed state. Furthermore, f(-) = ﬁ(A[B)
is ALAFF with ay =0 as ﬁ(A|B) is concave, and by = m~'h + f,,-1 ,-1 since
the result in Section 5.1 becomes independent of the states as we go to H.(A|B)
using point 3 of Proposition 5.4. We further find that

C3 < sup  |H, (AB) — H,,(A|B)| < 2logda,
p1,p2€S(H)

using Proposition 5.5. This allows us to apply Theorem 3.6 where E}“ax coincides
with Ey as of point 4 in Proposition 5.4. This concludes the claim. O

Even though a continuity bound for the BS-conditional entropy can only
be proven for positive definite states, numerical simulations show us that we
could expect a tighter bound on the previous proposition coinciding with that
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of Corollary 4.4, i.e. without the dependence on the minimal eigenvalues of the
states involved. One can find a visualisation of those numeric simulations that
underlie the conjecture in Fig. 5.2. The possibility of obtaining such a tighter
bound is left for future work.

pr+(1—p)a(A|B) - pHP(AlB) - (1 —p)HU(AlB)

Figure 5.2: We investigate the dependence of the almost convex remainder of
the BS-conditional entropy on the minimal eigenvalue of the involved states. For
the minimal eigenvalues 10™4,1078,10716,10732 we sampled five hundred pairs
of qubits (p,o) both of them with controlled eigenvalues. We then sampled for
every state pair ten values of p, the convex interpolation parameter, and plotted
the remainder. As can be seen from the plot, the remainder appears to be
independent of the minimal eigenvalue and the shape suggests a binary entropy
or Gini impurity as an upper bound. The plots show a similar pattern if the
dimension is increased.

5.2.2 Uniform continuity for the BS-mutual information

Let us address now the case of the BS-mutual information. Since the BS-
conditional entropy is a particular case of the latter (by assuming that one of the
reduced states of pap is maximally mixed), the discontinuity issues presented in
the previous subsection are expected to arise in the current one as well. More
specifically, the example of discontinuity of the BS-conditional entropy presented
in Proposition 5.6 also constitutes an example of discontinuity of the BS-mutual
information. Thus, we can only expect to prove uniform continuity for the BS-
mutual information for full-rank states.

However, there is a subtle difference between the settings of the BS-conditional
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entropy and the BS-mutual information. As shown in Proposition 5.5, the former
is bounded between the same values as the (usual) conditional entropy, whereas
the latter presents some pathological behaviour. Pathological in the sense that
its (tight) upper bound depends on the minimal eigenvalues of the reduced state,
as shown in Eq. (5.6). For this reason, a continuity bound for the BS-mutual
information necessarily will depend on the minimal eigenvalues of the states in-
volved.

Corollary 5.8 (Uniform continuity for the BS-mutual information).

The BS-mutual information on a bipartite Hilbert space H = Ha Q@ Hp is for
d;tl > m > 0 uniformly continuous on Sy = S>pm and for p,oc € Sy with
sllp—olly <e <1 we find that

- ~ Im
1,(A: B)—T,(A: B)| < 2 ¢(log min{d, dp}+logm™1)+ l+€zm(l i&_)

with Ly, =1 —mdy and
Zm<p) = Qfmfl,mfl(p) + (mil + 1)h(p) :

Proof. Asin the case of the BS-conditional entropy, we find that Sg is s-perturbed
A-invariant with s = mdy. To conclude that I.(A : B) is ALAFF we first note
that because of the convexity of D(||-)

~

Ly 4 (1—p)po (A B) < pD(p1]|p1,4 ® (pp1,5 + (1 = p)p2,5))
+ (1 = p)D(p2llp2,4 @ (pp1,B + (1 — p)p2,B))
<plp(A:B)+ (1 —p)l,(A:B)+h(p).

In the last step, we further used that ﬁ(H) is monotone decreasing in its second
argument, and pp1.p < pp1,5 + (1 = p)p2,B, (1 — p)p2,s < pp1,B + (1 = P)p2,B;
respectively. Hence ay = h. We follow similar lines to obtain by. Starting with
Theorem 5.3 and point 2 in Proposition 5.4 using that HpZIHOO < HpZ}BHm7 and
analogously for pg, we find

Lyt (1-p)pa (A= B) > pD(p1lp1,4 ® (pp1.5 + (1 — p)pa,5))
+ (1= p)D(p2llp2,a ® (pp1,5 + (1 = p)p2,)) — m ™ 'h(p) — fr-1.m—1(p)
> 1, (A:B)+ 1,,(A: B) = m 'h(p) — 2f -1 m-1(p).

In the last step we used again that E(H) is monotone decreasing in its second
argument and that pp1a + (1 — p)paa < (p+ (1 — p)m~Y)p1.a and pp1 a +
(1 —p)p2,a < (m~'p+ (1 —p))p2,a, giving us another f,,-1,,-1(p). Hence by =
m~th + 2fm-1,m-1. We conclude the proof by noticing again that Hp;ll“oo <
HIOZJIBHOO < m~!, yielding the upper bound

C; < Sélé) fp(A : B) < logmin{da,dg} +logm™ .
pPES0
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Finally we apply Theorem 3.6 and get the claimed bounds as Ef coincides with
E}na", due to point 4 in Proposition 5.4. O

Again we further simplify the continuity bound from the previous result, as
we did in Remark 4.11 and Remark 4.14.

Remark 5.9. To simplify the continuity bound from Corollary 5.8, let us upper
bound each of the terms z,,. Firstly, for f, we have

lm+€ 1

27fm”vm*1(z

Im

Ve.

£ ) - 4log?m~
m+€e/ T

Im

Then, we can bound the binary entropy term similarly, as the following holds for

any a € (0,1]:
(a+x)h< - >§ 2z,
a+x

since an inspection of the derivative shows that the function is non-decreasing in
a. Then, we obtain:

-1
m 1
(m—1+1)l l+5h(l 54_8) < ml + e

Therefore, combining these inequalities with the fact that ¢ < /e for ¢ < 1, and
replacing l,,, = 1 — mdy, we have

2logmin{da,dg} + 6logZm™" +v2(m~" + 1)

I(A:B)—I,(A:B)|<
(A B) (4 B)| < e

N

5.2.3 Uniform continuity for the BS-conditional mutual infor-
mation

Next, we provide a result of uniform continuity for the BS-conditional mutual
information, as defined in Eq. (2.5). This constitutes the analogue of its rela-
tive entropy counterpart, presented in Corollary 4.6. Since the BS-conditional
mutual information considered in this manuscript is the difference between two
BS-conditional entropies, a continuity bound for the former can be directly ob-
tained from a continuity bound for the latter. Moreover, it will not present the
pathological behaviour from the BS-mutual information, as the BS-conditional
entropies are bounded between the same limits as the (usual) conditional en-
tropies. See Proposition 5.5 for the specific bounds on all these BS-entropic
quantities.

Nevertheless, the continuity bound we obtain for the BS-conditional mutual
information also depends on the states’ minimal eigenvalues, as in the case of the
BS-conditional entropies. We again believe that our bound should be improbable.
However, there is no uniform continuity for positive semi-definite states due to
the discontinuities of the BS-conditional entropy (Proposition 5.6).
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Corollary 5.10 (Uniform continuity of the BS-conditional mutual information).

The BS-conditional mutual information over H = HAaQ Hp Q He is for d;{l >
m > 0 uniformly continuous on Sy = S»m(H) and for p,o € Sy with 3||p — o||; <
e <1 we find that

I1,(A: B|C) — I(A : B|C)| < 2el;, logmin{da, /dapc} + 29m(e)

with l,, =1 —mdy and

Im +€

Im

gm(#) = T (et e+ ) ()

I + €

Proof. We have that Sy is s-perturbed A-invariant using the same reasoning
as in the proof of Corollary 5.7. Because of the representation I(A: B |IC) =

H.(A|C) — H.(A|BC) we can immediately conclude that I (A: B|C) is ALAFF
with ay = f,,-1 -1 +m™ Ih and by = f-1m-1+m ~1h arguing along the same
lines as in Corollary 5.7. Using Proposition 5.5 we can conclude

C;é < es;l&)fp(fl : B|C) < 2logmin{da,\/dapc}.
p

Applying Theorem 3.6 and using point 4 of Proposition 5.4 we get that Ey =
E}na" and thereby conclude the claim. O

Similarly to Remark 5.9, we can write the previous continuity bound in a
more straightforward form.

Remark 5.11. We can further simplify the continuity bound from Corollary 5.10
by bounding the g,, term as in the case of Corollary 5.8. Firstly, for f, we have

[—— 1

T (z

I

2
€ )§4logm Ve

m+ € I,
Then, we can bound the binary entropy term similarly:

2m_1lm+£h<l € )Sle\/%-

lm m+€ lm

Combining these inequalities with the fact that ¢ < /e for ¢ < 1, and replacing
Iy, = 1 — mdy, we have

|T,(A: B|C) — I,(A: B|O)|

210gm1n{dA,\/dABo}+4log m~ 4+ 2v2m~!
1 —mdy

N
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5.2.4 Divergence bound for the BS-entropy

Finally, we conclude this chapter by providing a divergence bound for the BS-
entropy following the same lines as in the case of the relative entropy. We will
first prove the uniform continuity of the BS-entropy in the first argument and
subsequently derive from that result the divergence bound. These results should
be compared to their relative entropy analogues, namely Corollary 4.7 and Corol-
lary 4.8, respectively.

Corollary 5.12 (Uniform continuity of the BS-entropy in the first argument).
Let 0 € S+ (H) be fizred. Then D(:|o) is uniformly continuous on So = S(H),
and for p1, p2 € So with 1||p1 — po|| < e < 1 we find that

~ A < -1 -1 c
D(pillo) ~ Dipello)| < elog(my") + (1 -+ &)y h( )

with my the minimal eigenvalue of o.

Proof. The procedure is familiar. First, Sp is 0-perturbed A-invariant. Second
f(-) = D(*||lo) is ALAFF with ay = m;'h and by = 0 using Theorem 5.3 and
point 1 of Proposition 5.4. Further

C+ < swp D(plo) < logm;*
PES(H)

since pt/20~1p1/2 < m;1 1. Applying now Eq. (3.3) gives the claimed result. [J

Employing the above result we obtain a divergence bound for the BS-entropy
which constitutes the analogue to the one of the relative entropy Corollary 4.8.
Note that even the divergence bounds obtained in both cases are very similar,
except for the presence of a factor m_ ! in the second term of the bound.

Corollary 5.13 (Divergence bound for the BS-entropy).
Let p € S(H) and o0 € S (H), then for 5||p— o, <& <1, we have

Dpllo) < elogmy™ + (1 -+ eymg h( ).

with my the minimal eigenvalue of o.

Proof. In the context of Corollary 5.12, we just set p1 = p and py = o, giving
us that Lo —poll, < 3llp—ol, < e < 1. Further D(pollo) = D(alo) =

0 and |D(p1||o)| loses the absolute value, as D(:||-) > 0. The bound follows
immediately. O
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With this, we conclude our section on continuity bounds for entropic quan-
tities derived from the BS-entropy. We have deliberately omitted the analogues
of Corollary 4.10 and Theorem 4.13 for the BS-entropy, due to their high tech-
nicality and the complexity of the continuity bounds that we would obtain with
our method. However, following a procedure similar to the one in the case of the
relative entropy would produce analogous continuity bounds in the case of the
BS-entropy.
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CHAPTER 6

Applications and Outlook

In this chapter, we use the continuity bounds and derive results for various con-
texts in the field of quantum information. Among them are results on quantum
Markov chains, minimal distances to separable states and Rains bounds. We
then conclude by giving an outlook on future work and open problems that we
came across during working on the continuity bounds of the BS-entropy.

6.1 Applications

We begin the application section with the results on approximate quantum Markov
chains.

6.1.1 Approximate Quantum Markov Chains

For this section Hapc = Ha ® Hp @ Hc is a tripartite Hilbert space and papc €
S(Hapc) a quantum state. We will use the result on the conditional entropy to
obtain an upper bound on the conditional mutual information between A and C
conditioned on B of papc. This upper bound will be in terms of the one norm
distance of the Petz recovery of papc and the state itself.

The well-known property of strong subadditivity of the von Neumann entropy
[37] is equivalent to the non-negativity of the conditional mutual information,
which is furthermore known [38, 39| to vanish if, and only if,

1/2

_]_/
PABC = PABPRB

2 ~1/2 1/2
PBCPp  Pap>

i.e., whenever papc is a quantum Markov chain. In particular, if we denote

1/2 —1/2 —-1/2 1/2
PB—>AB(pBC) = pA/BpB / PBCPp / pA/B, we have

I’PB%AB(F’BC)(A :C|B) =0.

49
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If we now decompose the CMI of pspc in terms of a difference of conditional
entropies and apply the data processing inequality, we obtain

1,(A: C|B) = Hy(C|B) — H,(C|AB) < Hp,, ., p(pe) (CIAB) — H,(C|AB).

Applying now our continuity bound for the CMI from Corollary 4.4 (which pro-
vides, in this case, a tighter result than Corollary 4.6) we find an upper bound
on the CMI of p4pc in terms of how far it is from being recovered with the Petz
recovery map, i.e., in terms of

—-1/2 —1/2 1/2
HPABC pA%P //PBCPBI/PA%H .

A similar direction was previously explored in [40, Eq. (26)]. Note that, as
a direct consequence of Corollary 4.4, we get the following bound for any state
papc € S(Hagc):

I,(A: C|B) < 2e min{log d, log dc} + (1 + 5)h(1 i 5) ,
with

1/2 —1/2 -1/2 1/2
€= 2 PABC — PApPR ' PBCPR pAB .

As in Remark 4.9, we again have
(1+z)h (9”) <2z,
1+=z

for every x € [0,1]. Combining this with the fact that for e € [0,1], e < /&, gives
us for an upper bound of the CMI

1/2
I,(A:C|B) < (\[log min{da,dc} + 1) HPABC ,OA/BPE; /QPBCP;/QPX;H / .
(6.1)
This bound should be compared to lower bounds for the conditional mutual
information. On the one hand, Fawzi and Renner proved in [41] the following

lower bound for such a quantity in terms of the fidelity F(p,0) = H\f Vo Hl

I,(A:C|B) > —log F(papc: Re—aB(pBC))

where R p_, 4p is another recovery map, the so-called rotated Petz recovery, which
was explicitly constructed in [42]. Several results have been provided in this line
in the past decade. Here we specifically focus on [43], in which Carlen and
Vershynina proved:

I,(A:C|B) > ( ) o5 | 2l pabell H,OABC pipos” PBCP;}I/ZP%;H :
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Therefore, by combining Eq. (6.1) with Eq. (6.2) we obtain the following “sand-
wich” for the conditional mutual information of a tripartite density matrix papc
in terms of its trace distance to its Petz recovery map:

4 _ _ _
(3) 105 12 Noabell2 [ pase - pilies

<I,(A:C|B) <

/ —1/2 1/2”4
1

2
PBCPpB  PaB

, 1/2 —1/2 —1/2 1/2||Y/2
2 (logmin{da,dc} + 1) HpABc — pA/B,OB / PBCPpB / pA/BHl .

In particular, this implies that a state papc € S(Ha ® Hp ® H¢) is an approxi-
mate quantum Markov chain [44] (i.e. I,(A: C|B) < €) if, and only if, it is close
to its reconstructed state under the Petz recovery map. This idea was used in [45]
to prove that a Gibbs state of a one-dimensional local Hamiltonian is an approx-
imate quantum Markov chain, and subsequently, in [46] to provide an estimate
on the time it takes for a Markovian evolution of a density matrix to become an
approximate quantum Markov chain. Moreover, a similar inequality has recently
been employed in [47] to study the decay of the CMI for purely generated finitely
correlated states.

6.1.2 Difference between the relative entropy and the BS-entropy

A byproduct of our continuity bounds for the relative entropy is a quantification
of the difference between the relative entropy of two states and the BS-entropy of
the same states. This distance is in terms of the difference between the involved
states and their image under the Matsumoto map.

Corollary 6.1. Let p € S(H), 0 € Ssam(H) and m such that d;}' > 2m > 0.

Let
k
-3oan
i=1

be the spectral decomposition with eigenvalues A; and projections P;. Define den-
sity matrices

o=

-1 _
o 2po

= 7 PZ . ’ = P’L . .
D ;)\ tr[o ]tr[PZ-] q ;tr[a ]tr[B]

Then, for |lp—p|| <e <1 and §|lo —q||; < <1, it holds that

Blollr) — Dlpllo)] < (= =) Tog(m ™)

+(1 +a)h(1 i6> 4 olm +‘Sf,,ﬂmﬂ( d ) :
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with Iz =1 —m. In particular, if [p,0] =0, € and § can be taken as 0 such that
the RHS of Eq. (6.3) is zero.

Moreover, we can further simplify the previous bound to
~ 5log®m
[D(pllo) = D(pllo)| < (V2 —logm)V/e + m\/g (6.4)

Proof. Our argument is a slight variation of Matsumoto’s minimal reverse test
[33] (see also [48]). We can write the BS-entropy as the relative entropy of two
commuting density matrices

D(p|lo) = D(plla).

since we can verify with p; = A\tr[o P;], ¢; = tr[o P;] that

D(pllq) = izk;tr [%pi <1°g trlfiziﬂi] s tr?}z]ﬂ

k
= pi(logp; — log ¢;)
=1
k
= Mtr[oPj]log \;
=1

1 1 1 1
=1tr {00_5p0_5 log(o_ipa_ﬁ)}
1 41

= tr[plog(pza ,02)]

Obviously, if m is the minimal eigenvalue of o, then ¢; > m for all i € {1,...,k}.
Thus, the assertion follows from Theorem 4.13. Moreover, it is clear that if
[p,0] = 0 there is a unitary U which diagonalizes p and o simultaneously such
that p =p and 0 = q.

Finally, the last simplification from Eq. (6.4) is a direct consequence of Re-

mark 4.14 and, more specifically, Eq. (4.10).
O

6.1.3 Minimal distance to separable states

In this section, we show how to reprove the continuity bounds for the relative
entropy of entanglement in [2| from the ALAFF method and how this strategy
generalizes if we quantify the minimal distance to the set of separable states in
terms of the BS-entropy instead.

Let C C S(H) be a compact convex subset of the set of quantum states with
at least one positive definite state. We can define the minimal distance to C in
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terms of the relative entropy as
D ;= inf D .
c(p) ;ec (pllv)

As explained in [2], the fact that C contains a positive definite state guarantees
that D¢(p) < oo for all p € S(H). Moreover, the infimum is attained, as fol-
lows from the fact that the relative entropy is lower semi-continuous [34] and
Weierstrass’ theorem on extreme values of such functions [49, Theorem 2.43|.
Examples of C include SEP 45, the set of separable states for systems A, B, and

{dy'1a®0p : op € S(Hp)},

which yields D¢(pap) = —H,(A|B) +1logda. The quantity Dsgp ,, is known as
the relative entropy of entanglement [50, 51]. It constitutes a tight upper bound
on the distillable entanglement [52, 51|. This is the quantity we focus on for now.

Lemma 6.2. Let C C S(H) be a compact convex set containing at least one
positive definite state. Then, D¢ is convex on S(H).

Proof. This follows directly from the joint convexity of the relative entropy. In-
deed, for p1, p2 € S(H) let o1 and o9 be states in C such that

Dc(p1) = D(p1llo1),  De(pz) = D(p2llo2).
Let p € [0, 1]. Then,
De(pp1 + (1= p)p2) < D(pp1 + (1 = p)pz|lpor + (1 — p)o2)
< pD(p1llor) + (1 = p)D(p1lo2)
= pDe(p1) + (1 = p)De(p2) ,
where we have used joint convexity for the relative entropy in the second inequal-
ity. O
In order to apply the ALAFF method, we need to prove almost concavity

next.

Lemma 6.3. Let C C S(H) be a compact convex set containing at least one
positive definite state. Moreover, let p1,pes € S(H) and p € [0,1]. Then,

De(pp1 + (1 = p)p2) > pDc(p1) + (1 —p)Dc(p2) — h(p) -

Proof. We can use the almost concavity of the relative entropy. Let o the state
that achieves the infimum in D¢(pp1 + (1 — p)p2). By Theorem 4.1 and point 1
of Proposition 4.2, we obtain that
De(ppr + (1 = p)p2) = pD(p1llo) + (1 = p)D(p2]|o) — h(p)
> pDc(p1) + (1 = p)De(p2) — h(p) ,

which is the assertion. O
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Finally, we need the following estimate:

Lemma 6.4. Let H =H s ® Hp. It holds that

sup  |Dsgp,,(p) — Dsgp,z(0)| <logmin{da,dp}.
p,0E€ES(H)
Llp—cll1=1

Proof. Without loss of generality, let d4 < dp. For a pure state |¢)) with Schmidt
decomposition Zfﬁl Ailia) @ |ig), let

1 &
™= ; |ta)ial @ liBXiBl.
This state is manifestly separable. Then,

sup |DSEPAB (p) — Dsgp 45 (J)| < sup DSEPAB(|¢><¢’)
p,0€S(H) [YXP|ES(H)

Llpr—palli=1

< sup  D(|¥)XY| |lmy)
[¥XbleS(H)

= sup —log((¢| 7y |¥))
[YXp|eS(H)

=logdya.

In the first inequality, we have used that Dsgp ,,, is positive and convex. O

This allows us to prove via the ALAFF method a continuity bound for the
relative entropy of entanglement:

Theorem 6.5. Fore € [0,1] and H = Ha ® Hp, it holds that for p1,p2 € S(H)
with 3p— ol <

. 3
Dst1n(p) — s (<) < elogrmin{da,dn + 1+ (5 )

Proof. This follows from Theorem 3.6, using Lemma 6.2, Lemma 6.3, point 4 of
Proposition 4.2, and Lemma 6.4. ]

Theorem 6.5 recovers the bound [2, Corollary 8|, proven with very similar
methods, which improved over the earlier bound in [53]. The interest of executing
the proof here is that a similar strategy will give us bounds on a BS-entropy
version of the relative entropy of entanglement, as we will show now. We define

De(p) = yelgf?(p\h),

which measures how far p is from C in terms of the BS-entropy. The infimum is
attained as the BS-entropy is also lower semi-continuous [54, Section 10]. Using
the same arguments as for Lemma 6.2, we can prove convexity.
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Lemma 6.6. Let C C S(H) be a compact convex set containing at least one
positive definite state. Then, D¢ is convex on S(H).

Almost concavity requires more work in this case.

Lemma 6.7. Let C C S(H) be a compact convex set containing the mazimally
mized state. Moreover, let p1,p2 € S(H), p € [0,1), and d € N, d > 2 the
dimension of H. Then,

De(pp1 + (1 —p)p2) = pDelpr) + (1 — p)Delp2) — ga(p) -

Here, gq(p) := ﬁh(p) — log(1 —pl/d) forp € (0,1) and g4(0) := 0.

Proof. In order to apply the almost concavity of the BS-entropy, we need to
control the minimal eigenvalue of o, the best approximation of p in C. To this
end, we will use a strategy inspired by [53]. Let o, be the state achieving the
infimum in

w5l -0

for some s € (0,1) which we will specify later. Clearly,

De(p) < D(p||sou+ (1 9)5).

Furthermore, with & a state such that Dc(p) = D(p||6),

ﬁ(p” s0s + (1 — s)%) < lA)(pH 56+ (1 — 3)%)

< De(p) —log s,

as s6+(1— S)% > s6 and the logarithm is operator monotone. Note that without

loss of generality, we can assume & to be invertible, as ﬁc (p) < 0o, which implies
ker & C ker p. Thus, we can restrict & to the support of p, where & is positive
definite. Combining this bound with Theorem 5.3, we infer

—~ N ﬂ
De(ppr+ (1 —p)p2) > D(pm +(1 —p)pzusos + (1 — 8)3> + log s

N ~ d
= pDe(p1) + (1 = p)De(pz2) = 7—_h(p) +logss.

Here, we have used point 1 of Proposition 5.4. Finally, we have to choose s
such that 1%Sh(p) — log s goes to zero for p — 0% and is non-decreasing on

p €[0,1/2]. It turns out that s = 1 — p*/? is a convenient choice, see Lemma C.1
and Lemma C.2. O
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Remark 6.8. Note that we could have substituted g4 in Lemma 6.7 by a sym-
metrized version

o ) galp) p€0,1/2]
9ale) {gd(l —-p) pe(l/2,1]

in order to obtain

De(ppr + (1 = p)p2) = pDe(p1) + (1 — p)De(p2) — Galp).

for all p € [0,1] and g4(0) = ga(1) = 0. For the ALAFF method with s = 0,
however, it is only relevant what happens on [0, 1/2].

The final estimate we need in order to apply the ALAFF method is proven
in a very similar way as Lemma 6.4.

Lemma 6.9. Let H =Ha ® Hp. It holds that

sup | Dsgpap(p) — Dsep,y,(0)| < logmin{da,dg}.
ps0E€S(H)
Llp—ol1=1

Proof. Without loss of generality, let d4 < dp. For a pure state |¢)) with Schmidt
decomposition Z?;‘l Ailia) ® |ig), yet again

1 &
™= ; iaXial ® liBXiBl
is a separable state. Then,

sup | Dsepap(p) — Dsppay(0)| < sup  Dsgp,, ([9)X4))
p,0€ES(H) [ )XY|eS(H)

Llp—oll1=1

< sup  D([g)e|7y)
XIS (H)

= sup —log( (|7t )
NI €S (H) ( v )
=logdy, .

In the first inequality, we have used that BSEP Ap 1s positive and convex. Note
that 7, is invertible because we can without loss of generality restrict to its
support. ]

Theorem 6.10. Fore € [0,1], H=Hs @ Hp, and dap € N, dap > 2, it holds
that for p,o € S(H) with 3|p— o, <e

~ ~ . 5
D1 ()~ Diser (o) < < ogmin{aa, d) + (1 + by (1) -

Here, ga(p) == Sz h(p) —log(1 — p!/?) for p € (0,1) and ga(0) = 0.
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Proof. As shown in Lemma C.3, it holds that g4(p)/(1 — p) is non-decreasing on
[0,1] for all d € N, d > 2. Thus, the assertion follows from Theorem 3.6 using
Lemma 6.6, Lemma 6.7 with Lemma C.1 and Lemma C.2, and Lemma 6.9. [

To end this section, let us investigate the choice
Co:={d;'la®op:0p € S(Hp)}.
From the discussion after Eq. (2.4), we know that

Hy(A|B)< sup —D(pap|la®cp) = Hy(AB),
O'BES('HB)

but equality does not hold in general. This is different from the Umegaki relative
entropy, where the conditional entropy coincides with its variational expression.
Nonetheless, we obtain a continuity bound for PAI,;’”(A|B) from the approach in
this section.

Corollary 6.11. Let H = Ha @ Hp. Fore € [0,1] and dap € N, dap > 2, it
holds that for p,o € S(H) with t||p— o, < e

Fyvar 7yvar E
BV (A|B) — B (A|B)| < 2logda + (1+ £)ga, <1+€> '

Here, ga(p) := —fzh(p) —log(1 —p'/?) for p € (0,1) and ga(0) = 0.

Proof. 1t holds that for p,o € S(H) with |jp—o||; <¢
|H;™ (A|B) — Hy* (A|B)| = |De, (p) — Dey (o)l
since normalization does not matter. Thus to apply ALAFF, we need to bound

sup | De,(p) — Dey(0)] -
p,0€S(H)
Lip—ol1=1

Using Eq. (5.5) and the fact that ECO (p) > 0 for all states p, we obtain

sup  |Dey(p) — Dey(0)| < sup  Dey(p)
p.o€S(H) PES(H)
llp—olli=1

< sup —I;T;ar(A|B)—|—logdA
PES(H)

<logmin{da,dp} + logda
<2logdy.

The assertion follows from combining the above with Lemma 6.6, Lemma 6.7
with Lemma C.1, Lemma C.2, and Lemma C.3 to apply Theorem 3.6. O
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We note that the variational definition of the BS-conditional entropy Eq. (2.4)
is less pathological than the one via the partial trace Eq. (2.3). In the sense that
the latter exhibits discontinuities on the set of positive semi-definite states (see
Proposition 5.6), while the variational BS-conditional entropy does not and is
uniformly continuous on the entire set of quantum states.

6.1.4 Rains information

Inspired by the Rains bound from entanglement theory |55] the generalized Rains
bound of a quantum state pap € S(Ha ® Hp) was defined in [56] by

R — . D
(paz) UABEII:‘I%‘I%}’(A:B) (paBlloas),

where the minimisation is taken over the Rains set

PPT/(4: B) i= {oap : 045 20, Haﬁ%

gl}.
1

This definition can be easily extended to channels in the following way. For
a quantum channel Ty g : S(HA®@Ha) = S(Ha ® Hp), we define

In the above definition D denotes any divergence.

R(T) := max RTA/ B¢AA’ R
()= max R(Twos(0an))
for ¢ 44/ a purification of p4. In particular, for the Umegaki relative entropy, we
introduce the Rains information as

R(T) := i D(Ty !
@) pAIGI&lS‘E%,})iA)UABGII)%I%(A:B) La-p(Pan)loan),

as well as the BS-Rains information by

~

R(T) := i D(Tu : .
(T) PAE%%;?{A)JABelgrllDI{}’(AIB) (La—5(Pan)loas)

In the rest of this section, we will drop the subindex from the channels whenever
it is clear in which systems they act.

In [57], it was proven that the latter two quantities constitute upper bounds
to the quantum capacity of a quantum channel. Indeed, the following inequality
holds for any channel T

Q(T) < R(T) < R(T).

Moreover, the BS-Rains information is a limit of Rains informations induced by
a-geometric Rényi divergences, which can be written as single-letter formulas
and computed via an SDP, as shown in [57]. The study of these quantities is
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therefore of great interest for application in the context of strong converses of
quantum capacities of channels.

Here, as a consequence of Corollary 4.7 and Corollary 5.12, respectively, we
can provide continuity results for both the Rains information and the BS-Rains
information, respectively, following the lines of Theorem 6.5. Beforehand, we
need to justify that both quantities are well-defined, i.e., that each of these quan-
tities is attained at a certain py € S(Ha) and oap € PPT/(A : B), and thus
the minimum and maximum in their definitions are properly written. For that,
note that we are first taking an infimum on the second input over the compact
set PPT/(A : B). Then, the infimum is attained and the expression obtained is a
continuous function, as shown below in Eq. (6.6). Next, we perform an optimiza-
tion problem on the first input over another compact set, namely S(H 4). Thus,
that supremum is also attained and both Rains informations are well defined.

From now on, for simplicity and for similarity with the quantities introduced
in the previous section, given pap € S(H4 ® Hp), let us define

D 1(A- = 1 D .
pp1(4:B)(PAB) e (paBlloas)
Then, it is clear that we can rewrite, for a quantum channel T': S(Hq ® H a1) —
S(Ha®HB),

RT = D 1(A- T ’ R
(1) e Depr :B)(T(daar))

for ¢ 44/ a purification of p4. The next step before applying the ALAFF method
is bounding the difference between two Rains informations of two quantum chan-
nels. For that, we will use the 1 — 1 norm of the difference between channels.
Let us recall that for T': S(Ha®Ha) = S(Ha® Hp) a quantum channel, its
1 — 1 norm is given by

T = max ||[T(n)| -
[P n:Hn”lng (mlly

For T4_,p, the 1 — 1 norm coincides with the diamond norm. Now, as a
consequence of Lemma 6.4 and Theorem 6.5 from the previous section, we can
derive the following continuity bound for the Rains information.

Theorem 6.12. Fore € [0,1] and T}, 5. T35/ .5 : S(HA®Ha) = S(Ha®@Hp)
two quantum channels with 3| T4, 5 — T3/, gllio1 < €, we have:

IR(T_,5) — R(T3_, )| < elogmin{da,dp} + (1 + 5)h< (6.5)

1—}—5)'

Proof. Let us drop the subscripts from the channels for ease of notation. Firstly,
note that SEP4p C PPT/(A : B). Therefore,

R(T) = D roa.my (1 1)) < D T ).
(T) , hax Drer (4:B)(T(da4 ))_pAg}S%A) sEP 45 (T(Paa))
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Hence, in general

max Dpp1i/( 4 — Dpprica.ny (0
PAB,UABES(HAB)‘ pp1(4:B)(PAB) — Dpp1/(a:B)(0AB)|

%HPAB—UABlel

< max D (A AB
pan €S as) PPT (AB)(P )

< max  Dsgp,,(paB
pPABES(HaB) AB )

(6.6)

< logmin{dga, dg},

where in the last inequality we have used Lemma 6.4. Following the lines of
Theorem 6.5, we have for pap, oap € S(Ha®Hp) with ||pap —oap|1 < e the
following continuity bound:

. 13
|Depr(a:B)(paB) — Dpprv(a:p)(0aB)| < elogmin{da, dp} + (1 + €)h<17+8> ‘

Note that since PPT’(A : B) does not only contain states, but also subnormalized
states, Lemma 6.2 and Lemma 6.3 are not directly applicable. One can however
verify that the corresponding statements for PPT/(A : B) still hold using the
same arguments. For simplicity, let us denote

b(e) :=elogmin{dy, dp} + (1 + 5)h<1i+g> .

To estimate an upper bound on the difference that appears in Eq. (6.5), first note
that, given T1,7? : S(HA®Ha) — S(Ha®Hp) two quantum channels with
%HTl — T2H1_>1 <eg,and py € S(Ha) with ¢p44 a purification of it, we have

1 1
QHTl(gbAA/) o TQ(QSAA/)Hl = §HT1 - T2H1—>1 <e.

Consider now p', p* € S(H 4) with respective purifications ¢l 4/, ¢? 4/, the states
in which the respective maxima of R(T') and R(T?) are attained. Then, we
clearly have, for i,j = 1,2 and i # j,

|R(TV) — Dppria:y(T (¢ 4))| = |Deprracmy (T (¢ 4)) — Dpproca.sy (T (&) 40)]
<b(e),

and thus, ' o 4
R(T") > Dpprr(a:p)(T" (¢4 /) = R(T?) = b(e) -

Therefore, we can conclude
|R(T") — R(T?)| < b(e),
and consequently

|R(TY) — R(T?)| < elogmin{d,dg} + (1 +s)h(1i+€) .
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In a similar way, we can also prove uniform continuity and provide explicit
continuity bounds for the BS-Rains information. Analogously to what we have
done above for the Rains information, we can define for pap € S(H4 Q@ Hp) the
following quantity:

~

Dppri(a:p)(paB) == UABG%)I%}II}/(A:B)D(PABHUAB):

and thus, we can rewrite, for a quantum channel T : S(Ha @ Ha/) = S(Ha Q@ Hp),

R(T) := pAé%%A)DPPTf(A:B) (T(¢paar)),

for ¢4/ a purification of p4. We can finally use Lemma 6.9 and Theorem 6.10
from the previous section, for the BS-entropy, to obtain a continuity bound for
the BS-Rains information. However, the bound obtained, as well as the procedure
employed to derive it, are a straightforward combination of the strategies of the
continuity bound for the Rains information Theorem 6.12 and the continuity
bound for the BS-entropy of entanglement from Theorem 6.10. Therefore, we
omit it, to avoid unnecessary repetitions.

Theorem 6.13. Fore € [0,1] and T}, 5. T35 .5 : S(HAa®Ha) = S(Ha®Hp)
two quantum channels with 5| TY — T?(|1_,1 < e, we have:

~ R . .
|R(TY) — R(T?)| < elogmin{da,dp} + (14 &)ga,s (m) ’

where gq(t) := tl%h(t) —log(1 — tl/d).

6.2 Outlook

In this thesis, we have introduced a new method to derive results of uniform
continuity and explicit continuity bounds for divergences. Our method (cf. The-
orem 3.6), is named ALAFF after the functions to which it applies (almost locally
affine functions). Based on the ideas by Alicki, Fannes, and Winter which they
used to prove continuity bounds for the conditional entropy, it yet works for a
much wider class of divergences, namely all those for which we can prove almost
concavity. More specifically, our method considers an entropic quantity which is
(jointly) convex and almost (jointly) concave, and outputs continuity bounds for
such a quantity and any derived entropic quantity.

In particular, in this thesis, we have applied our ALAFF method to the
specific cases of the Umegaki and the Belavkin-Staszewski relative entropy. For
both of them, we have proven results of almost concavity (for the Umegaki case,
our result is shown to be tight), which, combined with their convexity, yielded a
plethora of results of continuity bounds for both the Umegaki and BS-entropy,
as well as for many other quantities derived from them. In particular, our results
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recover the previously known almost tight continuity bounds for the conditional
entropy and the (conditional) mutual information.

A natural question arises from the findings of this thesis: Is our method
applicable to any other family of divergences? We expect this to be the case,
since, as shown in Chapter 3, our method only requires almost concavity and
convexity (already known for divergences) in order to work. Therefore, a result
of almost concavity with a “well-behaved” correction factor would be enough and
is expected to exist, for families such as the a-sandwiched Rényi divergences,
given for two quantum states p and o by

~ %logtr[ a%pa% a} if kerp C kero
Da(pllo) := {‘”‘ ! ( ) ,

~+00 else
or the a-geometric Rényi divergences given by

ﬁ log tr [01/2(0_1/2pa_1/2)a01/2] if kerp C kero
~+00 else

I

ﬁa(pHU) = {

as they converge to the quantities studied in this thesis. In other words, the a — 1
limit of the a-sandwiched Rényi divergences evaluates to the relative, while for
the same limit the a-geometric Rényi divergences become the BS-entropy.

Also interesting are the findings related to the BS-entropy. First of all, we
have seen that the remainder we obtain in the almost concave result (cf. Theo-
rem 5.3) should be improvable, for two reasons. First, it does not coincide with
the concave remainder we obtained for the relative entropy (cf. Theorem 4.1) in
case the states commute. Second, numerics suggest an almost concave remainder
term of the BS-conditional entropy that is independent of the minimal eigenvalue
of the involved states (cf. Fig. 5.2), which is again not given for our bound. Al-
though there is room for improvement, there is no doubt that the BS-entropy,
and quantities derived from it, are “pathological” in some sense. We have shown
that the BS-conditional entropy exhibits discontinuities in the presence of van-
ishing eigenvalues (cf. Proposition 5.6), as opposed to the conditional entropy,
which behaves well in that setting. And further that the BS-mutual information
is unbounded in general (cf. Proposition 5.5). Closely related to this disconti-
nuity are the ambiguities when it comes to defining the BS-conditional entropy
itself and the dissimilarity between the variational definition and the one via the
partial trace. The latter is discontinuous on positive semi-definite states whilst
the former is not and both do not agree in general. We know that the infimum in
the variational definition is attained (cf. Section 6.1.3), however, not necessarily
by the partial trace. Naturally one can ask the question if there exists a CPTP
map that saturates the minimization. Directly connected are similar questions
about the BS-mutual information and alternative definitions of that quantity we
haven’t explored in this thesis.
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APPENDIX A

Supplements Chapter 4

A.1 Supplements to the proof of Theorem 4.1

We will now show that the result of the inequality in Eq. (4.3) is still true, even

if p1, p2, 01,09 are not full rank. We have that
kero C kero; C kerp; .

If ker o C ker p; we set

~ ~ -1~
Hy, = Pkerplﬁ(kera)J- ) Uy, = HHm 1 I,
and if ker o C ker oy,
~ ~ -1~
Uy = Pkerolﬁ(kercr)l ) Uy, = HHUI 1 g, ,

normalised projections on the spaces in the index. Both of the latter are quantum

states and fulfil

o1 = p1ll,, =0, Uy 01 = 01lly, =0, g, p1 = p1ll;, =0.

Forl1>e>0and1>46 >0, let
_Jell,, + (1 —¢)p1 if kero C ker py
Ple = p1 if kero =kerp;
{(51‘[01 + (1 —06)oy if kero C keroy
01,6 =

o1 if ker o = keroq

(A1)

We then have that ker p1 . = ker o1 5 = ker 0. This means, however, considering
tr[p1(logo —log oy 5)] we can reduce to the subspace where they are all full
rank. We then apply the Peierls-Bogolubov inequality [7] and Eq. (2.2) from

Corollary 2.3 to obtain

tr[p1(logo —log oy 5)] < logtr [exp (log(p1.c) + log(o) —log(o1,5))]

o0
it—1 —it—1
Slog/dtﬁo(t) tr [PLEUL; 005 ]

—00

A-1

(A.2)
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Both of the traces on the LHS and RHS of Eq. (A.2) can without change be
extended to the full Hilbert space again. Next, we take limits on both sides of
the inequality and in doing so recover the claim. We first note that clearly the
limit € — 0 requires no more argument as both sides are linear in €. Hence, we
get

oo
tr[p1(logo —log oy 5)] < log / dt fo(t) tr [101011’%1‘701,;;1} ) (A.3)
—o0
The limit § — 0 on the other hand is, in the case of ker o C ker o1, a little more
involved. Due to the orthogonality in Eq. (A.1), we cannot only split up the
logarithm but also eliminate terms. More specifically, we have

log 0y 5 = log(0ly, ) + log((1 — d)o1),
where the logarithms in the RHS have to be understood as living in the support
of the respective argument (and complemented with zeros in the rest). Hence,
we obtain for the LHS of Eq. (A.3)
tr[p1(logo —log o1,5)] = tr[p1(log o — log(6Ily, + (1 —d)o1))]

= tr[p1(log o — log((1 — 6)a1)] + tr[p1 log (6115, )]

= tr[p1(log o — log((1 — d)o1)]

= tr[pi(log o —log o] + log(1 — 9) .
Moreover, for the RHS of Eq. (A.3) we use that

of 5= 0"l + (1 —-46)%07,

for any z € C, where the last exponential has to be understood again in the
support of the respective argument. Thus, we obtain

it—1 —it—1 it—1 —it—1
tr [plo'l’; 0oy 5 ] =(1—06)"ttr [plal ooy ? }

it—1 —it—1

+ (- 5)#5157#{1 tr [0101 2 olly,? ]

it—1

it it—1  —it—1
+d62 (1-96) =z tr [plﬂgf oo, 2 ]

it—1

— —it—1
+6 tr [,011'[012 olly,? ]

it—1 —it—1
=(1—-06)"ttr [plal * oo, ? } .

Taking the limit § — 0 now directly follows from the continuity of the logarithm.
We thereby conclude

o0

ptr[pr(log(c) — log(ay))] < plog / dt Bo(t) tr [maf;lgafig_l] ,

—00
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for o1, 09, p1 not full rank.

A.2 Proof of Proposition 4.2

We first of all note that for all py, po € S(H) its true that 1[|p1 — pa||; < 1, hence
as a direct consequence fe, ¢, +3/lp1 — p2ll1h < for e +h. We therefore will drop
the %H p1 — p2|| in front of the h here already.

1. If 01 = 09 =: 0, we find for j = 1,2 that

oo oo
—it—1

¢ = /dtﬂo(t)tr{pja“zlaa : }: /dtﬁo(t)tr[pj]_l.

—0o0 —00

The reduction of f;, ¢, + h to h then happens because log(p + (1 — p)) =
log(1) = 0 gives fe, ¢, = 0.

2. With j,k =1,2, j # k we can write

—1/2 -1/2 _ _—1/2
i k%5 79

1/2 1

Py ouPy0; % < o7 P

-1/2 ~_1
;0 00 =m Py,

(A.4)
where Py, is the projection onto the support of o;. What we used in the
inequality is that clearly Py 04 FPy; < Py, < ﬁz_laj. If we use Eq. (A.4) we
find that

— 00

By the monotonicity of the logarithm, we obtain f¢ ., < fm-157-1 and
hence fe) e, +h < fr-15-1+ D
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3. For j,k=1,2, j # k we have

7 —it—1

r t—1
¢ = / dtBo(t) tr|pjap(la®p;p) 2 1a@prp(la®p;p)” 2

r it—1 —it—1
= /dtﬁo(t)tr Pj,AB 14 ®(Pj’é pk,Bpj7BQ ):|

[ it—1 —it—1
= /dtﬂo(t)tr p;,B(P; B Pk.BP; B )]

= / dtﬂo(t) tr[Pk,B] =1.

—0o0

We used that the functional calculus has the property that f(A ® B) =
f(A)® f(B) for A, B self-adjoint, as can easily be verified by direct com-
putation, and that the trace is cyclic. This gives us f, ¢, = f1,1 = 0 which
concludes the claim.

4. The derivative of p — ﬁh(p) at p € (0,1) is 7% > 0, which proves

the second assertion. For p +— ﬁfmh,m (p) = %p log(p 4+ mi(1 —p)) +
log(1 — p + map) we do the same, however, splitting the sum into two parts.
First we find that mgo > 1 hence log(1 — p + map) = log(1 + (m2 — 1)p)
is monotone in p, i.e. in particular non-decreasing. Second we look at
j = ﬁ log(p + m1(1 — p)). Forming the derivative at p € (0,1), we get

a _1p)2 <p+ (1p_p)m1 + log(p + m1(1 — p)) —p)
1 P p+(1—pms—1
(1—p)2<p+(1—p)m1+ p+mi(l—p) _p>
_ 1 <m1(1—p)+2p—1_ )
(I=p)2\ p+(1—p)m
_ 1 <m1(1—p)+2p—1—p(p+(1—p)m1))
(1—-p)? p+(1—p)m
_ 1 ((ml—l)(p—l)z')
(1=p)2\ p+(1—-p)m
>0

where we used that for x > 1, log(z) > xT_l (this can be seen by taking the
derivative and realizing that both sides coincide for x = 1) and m; > 1.
This concludes the claim.
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A.3 Proof of Lemma 4.12

We first show that for s > m, Sy is s-perturbed A-invariant. For that purpose
let 01,09 € Sy, then we find
AE(o1,02,p) = sp+ (1 — 5)[o1 — 03]1 > Mp,

which immediately gives the kernel inclusion as well as the condition to be lower
bounded by mp. Therefore, A% (o1, 09,7) € Sy which makes Sy a s-perturbed
A-invariant set. We show the other direction by contrapositive. Let s < m. Since
m < 1 we find an € > 0 and two orthonormal |0),|1) € supp p, as rankp > 2,
such that mp < p — § |i)(i| for i = 0,1. We then have that

€ €
= p+ oo - S 1
o= o+ S10X0 — 511
€ €
—p-° ‘i
72 = p— £ 00|+ 5 11
manifestly are contained in Sy. Furthermore, 1|joy — o2||; = € and
e o1 — o2]4 = |0)0] ,
e o1 — oa]- = 1)1 .

We will now show that there exists no 7 € S(H) such that A*(o1,02,7) € Sp
again, meaning Sy is not s-perturbed A-invariant. Assume there is an operator
7 > 0 such that AT (o, 09,7) € Sy we then would have

|0XO A* (04, 2, 7) [0)XO[- = [0X0]™ 57 |0X0[™ > 7 0)0] p|0)XO[

[N A (o1, 09, 7) [IXLF = [T s7 105 > 10 p 1]
where |i)(i|*" = P, —i)i| for i = 0,1. Here P, is the projection on the support of
p. We further used AT (o, 09, 7) > mp as AT (01,09, 7) are in S by assumption.
To fulfil Eq. (A.5) we clearly need to choose s > 0 and since s < m we directly
obtain the conditions

[0XO] 7 [0XO[ ™ > [0XO0 ™ p[0)0]"  and  [1)(L[* 7 [1)1]" > [1)Y1[* p|LN1|" .
This gives us,

trfr] > tx[0)0] 7 [0)O]" + J0)0| 7 [0}
(01 +10)

-

— tr| )0 7 J0)XO1 ™ -+ 10)O] [1)(1[* 7 [1)(11* o)

> tr[JOXO[ p |0)O[ + 001 [1)LI* p 1)1 [0)0]]

= tr[|0Y0[" p 0)(0[" + [0)0] o |00
= tr[Pyp] = trfp] =1,

using that |0) and |1) are orthogonal, hence [0X0| |LX1* = |LX1[* [0)0] = |0X0|
and |0)0|? = [0)0], (J0X0[")2 = |0)0]*. We thus conclude 7 & S(H) proving the

claim.
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Supplements Chapter 5

B.1 Proof of Proposition 5.4

1. If 0y =09 =0, then for j =1,2

~ — wtl — _ —it+1
¢ = / atBo(t) e s (o} 2o o)) E 0 B R o) P )
= /dtﬂo(t)tr[pj]: /dtﬂo(f):1

which gives us immediately fz, & + coh = éoh.

2. For j, k =1,2 with j # k we first have o, < m~lo; giving us

[e.o]
. 1/2 1 1/2yittl —1/2 ~1/2, 1/2 1 1/2,=Zit+l
¢j < /dtﬁo(t)tr[/}j(/)j/ g 1Pj/) 2P Pm Lojp; / (Pj/ g; 1Pj/) 2
—00

=m~! [ dtBo(t)tr[p;] =m .

—0o0

Since ¢g < m~! and because the logarithm is monotone this immediately
gives fz & + Coh < fr—1 -1 + m~1h.

3. The proof is along the same lines as the one for 2., however with o; =
d;ll 14®p;p. We just have to show that the minimal eigenvalue of o;
is bounded from below by m. We use that Ty : 7 — le 14®7mp is a
conditional expectation and that dzl 14 ®7pg is full rank if 7 was full rank
[3, Theorem 4.13|. This means, however,

(dy' 1a®p;p) ™" =Talps) ™" < Talp; ),

B-1
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which gives us that
@3 a@o) N < Il <l <m7 (B

Hence, we have that H(d;ll ® pjB) " H;Ol the minimal eigenvalue of

d;l 14 ®pjp is bounded from below by m. From here on the proof is
analogous to the one in 2. We obtain fz &, + coh < f,-1,,-1 + ¢oh and
again use Eq. (B.1) to get fr,-1 -1 + éh < fr-1,,-1 +mth.

4. The proof is completely analogous to the one in 4. of Appendix A.2.

B.2 Proof of Proposition 5.5

1. We begin with the BS-conditional information. The upper bound on H. (A|B)

can be obtained by
H,y(A|B) = ~D(paplld;' 14 ®pp) +logda < logda.

where we used the non-negativity of ﬁ(H) on quantum states. The bound
is attained if one inserts the maximally mixed state, i.e., pap = d;UlB 1ap.
For the lower bound we use that —D(-||-) is jointly concave and tr 4[] linear
which means without loss of generality one can assume p to be pure, i.e., a
rank one projection. Then

Hyyy)(AlB) = =D(|)}¥| || L4 ©Pp)
= — tr[[ue log W)l (1a @P5") [ ?]
—log tr[|¥)(¢| (La®Pg")] = —logtr[PpPy']
with Pp = tra[|¢)v¢|]. Employing the Schmidt decomposition to |¢)))| we

find that 4
Pp = Z AP,

with P; orthogonal rank one projections on Hp, )\ > 0 and Z )\2 =
Further d < min{da,dp} the Schmidt rank. This gives us that

r[PpPg! Z M2 =d < min{da,dg} .

Through monotonicity of the logarithm, we obtain the lower bound, i.e.,
H,(A|B) > —logmin{da,dg} .

This bound is attained for p a pure state with full Schmidt rank, which can
directly be seen from the above calculations.
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2. We now tackle the BS-mutual information. The lower bound, i.e. ﬁ(p\ lo) >
0 for every pair of states, is a direct consequence of the data processing
inequality [18]. Applying tra[-], we find

fp(A :B) = ﬁ(pABHPA ® pB) > B(PBHPB) =0.

To proof the upper bound, we w. 1 0.g assume that szl H < Hpgl H

1” 4 @ pB, where P,, is the projection to
the support of p. This glves us

I,(A: B) = D(papllpa @ ps) < D(pas|| Pp, @ pp) +log||px"||

= D(pas| 1a®ps) +log |03} = ~FL,(AIB) +log |||
<logmin{da,dp} + log HpAlH

< logmin{da,dp} + logmln{HpA HOO, HpBlH

In the second equality we used that (ker p4) ® Hp C ker pap, so extending
P,, to 14 has no effect. With the next example, we will not only see that
the bound is tight but also that the scaling is of the order of the given
bound. For that purpose let d4 € N and a bipartite space H4 ® Hp with
7—[ 4 having dimension d4 and H p dimension dg = d4 + 1. Furthermore, let

(O 1). We then consider sets of orthonormal vectors {|i,4>}?21 C Ha,

{|zB>} , C Hp and define

dAl

7 lia) @ lip) + V1 —l(da)a) ®[(da)B)

= Z Vi lia) @ lig)

with the \; defined accordingly. We find that
pa = trp[[Y)]] = Z/\ lia)ial ,

pB = tra[[Y)XY|] = ZA liB)in|

and the Moore-Penrose inverse (in the case of P4 it is an inverse)

Pa —ZA lia)ial ,

PB —Z/\ Yig)ip] -
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We find
1 \f L .
tr[[o)y]px © pp'] Z L (ialka) (kalja) Gilis) (1lis)
J,k,l
Z \/; lkék‘jéllél]
g,k,l

_ I (dA —1)2 1
B Z i 5 1o
with which, as |¢)(¢| is a rank one projection

Ty (A 2 B) = s lus log (lu)wl” p3' @ o3 o)l ]
= log tr[|[¥)}v] py' @ pp']

:10g<(dAE_1)2 + 1i€> > log(M) .

We directly obtain Hp;llH = HpBlH = % and by construction d4 <
dp, hence the bound in Eq. (5.6) gives
-~ da(da —1)

We first note that for e = 1 — i we get equality in Eq. (B.2). What is,
however, more interesting is the fact that

10g<(dA€_1)2> < Ty (A: B) < log<dAwA_1)> ’

3

| log(dA(dg - 1)> - log((dA - 1>2> |= 1og(dAd‘_‘ 1) .

L.e., the error of the bound is of order log (djfL) independent of the . This

with

means, that the scaling behaviour of the bound, in terms of the minimal
non-zero eigenvalue of p4 and pp respectively is the best one can do.

3. The lower bound of the BS-CMI is again a consequence of the data pro-
cessing inequality. The upper bound is a direct consequence of the bounds
obtained for the BS-conditional entropy (see Eq. (2.5))

I,(A: B|C) = H,(A|C) — H,(A|BC)
<logdy + logmin{da,dpc}
= logmin{d%, dapc} .

We expect that the tightness of such a bound can be proven in a similar
way to the one for the BS-mutual information.
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Supplements Chapter 6

C.1 Behavior of g4

In this section, we study the function g4(p) := ﬁh(p) — log(1 —pl/d) for p €
(0,1) and a fixed d € N, d > 2. This function appears in some of the continuity
bounds in Section 6.1.3.

Lemma C.1. Let d € N, d > 2. Then, lim, o+ ga(p) = 0. In particular, gq is
continuous on p € [0,1).

Proof. Since lim,, o+ log(l — pl/d) = 0, we can focus on %/dh(p). The assertion
follows from applying L’Hospital’s rule twice. Indeed,

. d _ o d(log(1 —p) —log(p))
e prraP) = o T
_ o d(=(1-p)t—pT

p—0+ (1 _ d)pl/d*Q/dQ

. d3 p2—1/d +pl—l/d
p—otd—1 1—0p

=0.

Continuity, therefore, follows from the definition of the function. O

Lemma C.2. Let d € N, d > 2. Then, the function gq is non-decreasing on
[0,1/2].

Proof. We can differentiate g4(p) on (0,1/2). This yields

9 1 ( p2/d—1

+(d—1+p Hlog(l—p)—(d—1) log(p)>

ap® W) = i g — iy
1
= WQ&(P)~ (C.1)

C-1
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We will now show monotonicity in d of g/;(p) for all p € (0,1/2). This will allow
us to show non-negativity of Eq. (C.1) on (0,1/2) only for d = 2 and conclude it
for all d > 2. We have

p¥ = (d(pt? — 1) + (p"/? — 2)log(p))

5g%2P) = BV 1)? +log(1 — p) — log(p) .

The above is non-negative for p € (0,1/2), if

1 1 1
_pl/d - > — pl/d L - >

(2—p )logp_d(l p’Y) & (1+1_p1/d)logp_d

. . . . . . — log(2
One obtains the last inequality by substitution of p = e% with ¢t € (—oo0, %())
giving us

—dt(1+ ! )>d & —t(1+ ! ) >1
1—et’ — 1—et’ —

which is true for ¢t € (—o0,0) hence in particular on (—oo, —%). We thereby
have that for d > 2 p € (0,1/2) ¢/,(p) > g5(p). It is straight forward to see that
g5(p) > 0onp € (0,1/2). This finally lets us conclude the claim that g4(p) is non-
decreasing on p € [0,1/2] as gq(p) is continuous on [0,1/2] by Lemma C.1. [

Lemma C.3. Let d € N, d > 2. Then, the function p — gq(p)/(1 — p) is
non-decreasing on [0,1).

Proof. The argument follows similar lines as the one in Lemma C.2. We first
note that p — ﬁ is non decreasing on [0,1/2) and p — g¢4(p) is as well, as
proven in Lemma C.2. Hence p — ﬁ g4(p) is non-decreasing on [0,1/2]. What
now remains to show is that it is non-decreasing on [1/2,1). We can differentiate
the function on the interval [1/2,1) and obtain

9 galp) 1 [dpVh(p) —log(1 - p'/?)
opl—p 1—p 1—p

pl/d—1

ai—
L (p L1 “1a (i)
> ﬂ <p 1/dh(p) (1—]? — p) +(d—-1)p 1/d <1_ + log(1 —p))

p
log(l —pl/d)
1-p

—p Y~ h(p) + dp~/(log(1 — p) — log(p))> :
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The last inequality holds since p > % and d > 2 hence

1 LI
I—p p— 7
h(p)
M tog(1—p) >0
1_p+og( p) >0,

log(l — pl/d)

0.
1—p

p Y log(1 — p)

v

Thus p — gflf(};) is non-decreasing on [1/2, 1), which concludes the assertion.

C-3
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APPENDIX D

Notation and Abbreviations

Complementary to the introduction in Chapter 2 we summarise the abbreviations
and notation used in this thesis in the following two tables.

Table D.1: List of abbreviations.

BS Belavkin-Staszewski

ALAFF Almost locally affine

CPTP Completely positive, trace preserving
DPI Data-processing inequality

CMI Conditional mututal information
SDP Semidefinite program

Table D.2: Notational conventions for mathematical expressions.

Operators on Hilbert spaces

(see Section 2.1, Section 2.2)

H

(1)

d

1), lg), li) i €N
B(H)

A, B,N, M, P,
T

A*

ker[A]
tr[A]

A

4],
A>B
S(H)

P, 0, Ty Y, W
tra[p]

Finite dimensional Hilbert space

Inner product

Dimension of the Hilbert space

Vectors on a Hilbert space

Set of (bounded) linear operators on H
(Bounded) linear operators

Completely positive, trace-preserving
linear map [11]

Adjoint of the operator A

Kernel of the operator A

Trace of the operator A

=V A*A, absolute value of the operator A
Schatten p-norm of the operator A
Loewner order on the self-adjoint operators
Set of quantum states on H

Quantum states

Partial trace of the state p, tracing out the
C' system

D-1
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pc

NOTATION AND ABBREVIATIONS

Indicate that the state lives in S(H¢), or that
it is the image under partial traces, that just
leave the C system remaining

Entropic quantities

(see Section 2.3)

H(A|B)
HY"(A|B)
H(A|B)
HV&r(A’B)
I(A: B)
A: B)
I(A: B)
(A: B|C)
I(A: B|C)
[°(A: B|C)

I*(A: B|C)

Von Neumann entropy

Umegaki relative entropy

Belavkin-Staszewski relative entropy
Divergence

Conditional entropy

BS-conditional entropy

Variational BS-conditional entropy
Conditional divergence

Variational conditional divergence

Mutual information

BS-mutual information

Mutual information of an arbitrary divergence
Conditional mutual information
BS-conditional mutual information (one-sided)
(One-sided) conditional mutual information
of an arbitrary divergence

(Two-sided) conditional mutual information
of an arbitrary divergence
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