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Chapter 1

Topological, metric, and normed
spaces

Definition 1.1 (Sequence).
A sequence (xn) = (x1, x2, x3, . . .) in a set X is a map:

x : N → X, n 7→ xn

Definition 1.2 (Convergence of a sequence).
A sequence (xn) in R converges to x ∈ R, if

∀ε > 0 ∃Nε ∈ N ∀n ≥ Nε : |xn − x| < ε

(if for every ε > 0 it holds ’eventually’ that |xn − x| < ε)
A sequence (xn) in Rk converges to x ∈ Rk, if

∀ε > 0 ∃Nε ∈ N ∀n ≥ Nε : ∥xn − x∥ < ε

A sequence (xn) in a metric space converges to x in the metric space:

∀ε > 0 ∃Nε ∈ N ∀n ≥ Nε : d(xn, x) < ε,

where d(·, ·) is called the metric of the space.
A sequence (xn) in a topological space converges to x in the topological space, if
for every neighbourhood U of x eventually xn ∈ U .

Definition 1.3 (Norm and normed space).
Let V be a vector space either over R or C. A norm ∥ · ∥ on V is a map:

∥ · ∥ : V → [0,∞), x 7→ ∥x∥

with the properties:

1. ∥x∥ = 0 ⇔ x = 0

2. ∀x ∈ V, λ ∈ K : ∥λx∥ = |λ| · ∥x∥

1



1. Topological, metric, and normed spaces 2

3. ∀x, y ∈ V : ∥x+ y∥ ≤ ∥x∥+ ∥y∥

The pair (V, ∥ · ∥) is called a normed space.

Example 1.4. 1. On V = Rn or Cn the following maps are norms:

∥x∥2 =
√

|x1|2 + |x2|2 + . . .+ |xn|2 euclidean norm
∥x∥∞ = max{|x1|, . . . , |xn|} maximum norm
∥x∥1 = |x1|+ |x2|+ . . .+ |xn| 1-norm

or, more generally, for p ∈ [1,∞), we obtain:

∥x∥p =
( n∑
j=1

|xj |p
) 1

p p-norm

2. Let X a set, (Y, ∥ · ∥Y ) a normed space, and

V := {f : X → Y | sup
x∈X

∥f(x)∥Y <∞}.

Then ∥f∥∞ = sup
x∈X

∥f(x)∥Y is a norm on V.

Exercise 1.1. Show Item 2 of Example 1.4.

Definition 1.5 (Metric and metric space).
Let X be a set. A metric d on X is a map:

d : X ×X → [0,∞)

with the following properties:

1. d(x, y) = 0 ⇔ x = y

2. Symmetry: ∀x, y ∈ X : d(x, y) = d(y, x)

3. Triangle inequality: ∀x, y, z ∈ X : d(x, z) ≤ d(x, y) + d(y, z)

The pair (X, d) is called a metric space

Example 1.6. 1. Let (V, ∥ · ∥) be a normed space. Then d : V ×V → [0,∞),
(x, y) 7→ d(x, y) := ∥x− y∥ defines a metric on V.

2. Let X be as set. The discrete metric on X is defined by:

d(x, y) =

{
0 if x = y

1 otherwise
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3. The euclidean unit sphere S2 := {x ∈ R3 | ∥x∥2 = 1} with the metric:

d(x, y) := arccos(⟨x, y|x, y⟩)

is a metric space.

Definition 1.7 (Open sets in a metric space).
Let (X, d) be a metric space.

1. For x0 ∈ X and r > 0 the set:

Br(x0) := {x ∈ X | d(x, x0) < r}

is called the open ball , with the radius r and the centre x0.

2. A subset of U ⊂ X is called a neighbourhood of x0 ∈ X, if U contains an
open ball around x0, i.e.

∃r > 0 : Br(x0) ⊂ U.

Then x0 is called an interior point of U .

3. A subset U ⊂ X is called open, if it contains only interior points, i.e.

∀x ∈ U∃r > 0 : Br(x) ⊂ U.

Example 1.8. 1. Let (X, d) be a metric space. Then for any x ∈ X and
r > 0 the set Br(x) is open. (Exercise 2: Prove this!)

2. Let X be equipped with the discrete metric. Then any subset U ⊆ X is
open: B 1

2
= {x} ∀x ∈ X

Exercise 1.2. Show Item 2 of Example 1.8.

Proposition 1.9. Let (X, d) be a metric space. Then:

1. ∅ and X are open.

2. If U, V ⊂ X are open, then also U ∩ V is open.

3. If Ui ⊂ X is open for all i ∈ I, then also
⋃
i∈I

Ui is open.

Exercise 1.3. Proof Proposition 1.9.

Item 2 implies that intersections of finitely many open sets are open. However,
this does not hold for infinite intersections: Let Un = (− 1

n ,
1
n) ⊂ R, n ∈ N. Then⋂

n∈N
Un = {0} is not open.
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Definition 1.10 (Closed set).
A subset A ⊂ X of a metric space is closed , if its complement is open, i.e.
AC = {x ∈ X | x /∈ A} is open.

Example 1.11. 1. Let X = R and a, b ∈ R with a < b. Then [a, b], [a,∞)
are closed, but [a, b) is neither open nor closed.

2. For any metric space (X, d) the sets ∅ and X are open and closed.

Definition 1.12 (Topology).
Let X be a set. A topology T on X is a collection T ⊂ P(X) of subsets of X
with the following properties:

1. ∅, X ∈ T

2. U, V ∈ T ⇒ U ∩ V ∈ T

3. Ui ∈ T for all i ∈ I ⇒
⋃
i∈I

Ui ∈ T

The sets U ∈ T are called the open sets and (X, T ) is called a topological space.
A ⊂ X is closed , if AC ∈ T . U ⊂ X is called a neighbourhood of a x0 ∈ X (and
x0 is an interior point of U), if:

∃O ∈ T with x0 ∈ O ⊂ U.

Example 1.13. According to Proposition 1.9, the open sets in a metric space
form a topology.

Definition 1.14 (Relative topology).
(X, T ) a topological space and Y ⊂ X a subset of X. Then T |Y = {O∩Y | O ⊂
T } is a topology on Y , the subspace or relative topology . The elements U ⊂ T |Y
are called relative open sets.

Example 1.15. 1. X = R, Y = [0, 1]. Then Y ∈ T |Y , i.e. Y is relatively
open in itself. Also [0, 12) ⊂ Y is relatively open, since [0, 12) = (−1

2 ,
1
2) ∩ Y

2. (X, d) a metric space and Y ⊂ X a subset. Then (Y, d|Y ) is a metric space.

d|Y : Y × Y → [0,∞], (y1, y2) 7→ d|Y (y1, y2) = d(y1, y2)

3. (V, ∥ · ∥) normed space and U ⊂ V a vector subspace. Then (U, ∥ · ∥|U ) is
a normed space.

Definition 1.16 (Interior, closure, boundary).
Let (X, T ) be a topological space and Y ⊂ X.

1. The set
◦
Y =

⋃
U∈T
U⊂Y

U is called the interior of Y .
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2. The set Y =
⋂

U∈T
U⊂Y C

UC is called the closure of Y .

3. The set ∂Y = Y \
◦
Y is called the boundary of Y .

Proposition 1.17. 1.
◦
Y ⊂ Y ⊂ Y .

2.
◦
Y is the largest open set contained in Y .

3. Y is open ⇔ Y =
◦
Y .

4. Y is the smallest closed set containing Y .

5. Y is closed ⇔ Y = Y .

6. (
◦
Y )C = (Y C) and

(
Y C

)◦
=

(
Y
)C .1

Proposition 1.18. Let (X, T ) be a topological space and Y ⊂ X. Then:

1.
◦
Y is the set of interior points of Y .

2. x ∈ ∂Y ⇔ for any neighbourhood U of x U ∩ Y ̸= ∅ and U ∩ Y C ̸= ∅.

3.
◦
Y = Y \∂Y and Y = Y ∪ ∂Y

Example 1.19. 1. For Y = [a, b) ⊂ R we have
◦
Y = (a, b), Y = [a, b], ∂Y =

{a, b}.

2. For Q ⊂ R we have
◦
Q = ∅, Q = R, ∂Q = R.

Definition 1.20 (Convergence in a topological space).
Let X be a topological space. A sequence (xn) in X converges to a ∈ X and we
write:

lim
n→∞

xn = a,

if for any neighbourhood U of the point a there exists N ∈ N such that xn ∈ U
for all n ≥ N .

Remark 1.21. In general convergence points are not unique: On any set X with
the indiscrete topology

T = {∅, X}

any sequence (xn) in X converges to every point in X!
1This can be proven using de Morgan’s laws: For a family of sets (Ai)i∈I it holds

(a)
( ⋂

i∈I

Ai

)C

=
⋃
i∈I

AC
i ,

(b)
( ⋃

i∈I

Ai

)C

=
⋂
i∈I

AC
i .
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Definition 1.22 (Hausdorff spaces).
A topological space (X, T ) is Hausdorff , if:

∀x, y ∈ X,x ̸= y,∃U, V ∈ T : x ∈ U, y ∈ V, U ∩ Y = ∅ .

Remark 1.23. 1. In Hausdorff spaces, sequences have at most one limit.

2. Metric spaces are Hausdorff: For x, y ∈ X, x ̸= y, we have d(x, y) = r > 0
and B r

2
(x) ∩B r

2
(y) = ∅.

Definition 1.24 (Cluster point).
A point a ∈ X is called a cluster point of a sequence (xn) if any neighbourhood
U of a contains infinitely many elements of (xn).

Proposition 1.25. Let X be a metric space and A ⊂ X. Then

a ∈ A ⇔ ∃(xn) in A: lim
n→∞

xn = a

Remark 1.26. The implication ⇐ of Proposition 1.25 holds also in topological
spaces.

Definition 1.27 (Cauchy sequence).
A sequence (xn) in a metric space X is called Cauchy sequence, if

∀ε > 0∃N ∈ N∀n,m ≥ N : d(xn, xm) < ε

Proposition 1.28. Every convergent sequence in a metric space is also a Cauchy
sequence.

Exercise 1.4. Proof Proposition 1.28.

Definition 1.29 (Complete metric space, Banach space). 1. A metric space
X is called complete if every Cauchy sequence in X converges.

2. A complete normed space (the norm induces the metric) is called a Banach
space.

Example 1.30. 1. R,C,Rn,Cn (with e.g. the Euclidean norm) are Banach
spaces.

2. (Q, | · |) is not complete, as there exists a Cauchy sequence (xn) ⊂ Q with
lim
n→∞

xn =
√
2 but

√
2 /∈ Q.



Chapter 2

Continuity, compact sets,
connected sets

Definition 2.1 (Continuity and sequential continuity).
Let X,Y be topological spaces, f : X → Y a map, and a ∈ X

1. We say that f is sequentially continuous at a, if for a sequence (xn),
lim
n→∞

xn = a implies that

lim
n→∞

f(xn) = f(a).

2. We say that f is continuous at a, if

∀U ∈ U (f(a))∃V ∈ U(a) : f(V ) ⊂ U.1

If a function is (sequentially) continuous at all points a ∈ X, then we say that f
is (sequentially) continuous on X.

Proposition 2.2. If f : X → Y is continuous at a ∈ X, then f is also sequen-
tially continuous at a.

Exercise 2.1. Proof Proposition 2.2.

Proposition 2.3 (ε-δ-continuity in metric spaces). A function f : X → Y
between metric spaces X,Y is continuous at a ∈ X, if and only if

∀ε > 0∃δ > 0 : f(Bδ(a)) ⊂ Bε(f(a))

Exercise 2.2. Proof Proposition 2.3.

Proposition 2.4. A function f : X → Y between metric spaces X,Y is contin-
uous at a ∈ X, if and only if it is sequentially continuous at a.

Proof. ⇒ Proposition 2.2
1U(x) is the set of all neighbourhoods of the point x.

7



2. Continuity, compact sets, connected sets 8

⇐ (by contraposition A⇒ B ⇔ ¬B ⇒ ¬A)
Assume that f is not continuous at a, i.e.

∃ε > 0∀δ > 0 : f(Bδ(a)) ̸⊂ Bε(f(a)).

For δ = 1
n choose xn ∈ Bδ(a)\f−1(Bε(f(a))) ̸= ∅. Then lim

n→∞
xn = a, but

f(xn) /∈ Bε(f(a))∀n ⇒ f is not sequentially continuous.

Theorem 2.5. Let X,Y be topological spaces. A map f : X → Y is continuous
(on X), if the preimage f−1(O) ⊂ X of any open set O ⊂ Y is open.

Example 2.6. 1. In a metric space (X, d) the distance function to a point
b ∈ X,

db : X → [0,∞), x 7→ db(x) := d(x, b)

is continuous.2

2. In a normed space (V, ∥ · ∥) the norm:

∥ · ∥ : V → [0,∞),

addition:
+ : V × V → V, (x, y) 7→ x+ y,

and multiplication by scalars:

· : K× V → V, (λ, v) 7→ λ · v

are all continuous.

3. The composition of continuous functions is continuous. If f : X → Y and
g : Y → Z are continuous then also g ◦ f : X → Z is continuous.

Proof. Let O ⊂ Z be open g cont.⇒ g−1(O) ⊂ Y is open f cont.⇒ f−1
(
g−1(O)

)
=

(g ◦ f)−1(O) ⊂ X is open. ⇒ g ◦ f cont.

Remark 2.7. 1. Let (X, dX) and (Y, dY ) be metric spaces. Then a metric on
X × Y is for example

d((x1, y1), (x2, y2)) := (dx(x1, x2)
p + dy(y1, y2)

p)1/p 1 ≤ p <∞

2. Let (X, TX) and (Y, TY ) topological space. Then the (product) topology
on X × Y is generated by

{O1 ×O2 : O1 ∈ TX , O2 ∈ TY }

also called bose topology .
2Also d : X×X → [0,∞) is continuous using a suitable metric on X×X. For the definition

of this metric, see Remark 2.7.
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3. Let (Xi, Ti), i ∈ I, be topological spaces. Then the product topology on∏
i∈I

Xi is generated by

{∏
i∈I

Oi : Oi ∈ Ti and Oi ̸= Xi only for finitely many i ∈ I
}
.

Definition 2.8 (Lipschitz continuity).
Let X,Y be metric spaces. A function f : X → Y is called Lipschitz-continuous,
if there exists L ≥ 0 such that

∀x1, x2 ∈ X : dY (f(x1), f(x2)) ≤ L · dX(x1, x2).

Then L is called a Lipschitz-constant for f . If f has a Lipschitz-constant L < 1,
then f is called contraction.

Example 2.9. 1. f(x) = ax+ b is Lipschitz continuous with L = a.

2. f ∈ C1(R) then L = sup
x∈R

|f ′(x)|.

3. f(x) = x2 is continuous but not Lipschitz continuous.

4. f(x) =
√
|x| is continuous but not Lipschitz continuous, as its derivative

around 0 diverges.

Definition 2.10 (Homeomorphic functions, isometries and isometric isomor-
phisms).

1. Two topological spaces X,Y are homeomorphic if there exists a bicontinu-
ous bijection

f : X → Y a homeomorphism

2. A map f : X → Y between metric spaces is an isometry , if

∀x1, x2 ∈ X : dY (f(x1), f(x2)) = dx(x1, x2) .

X and Y are isometric, if there exists a bijective isometry f : X → Y .

3. Two normed spaces V and W are isometrically isomorphic, if there exists
a linear bijection (isomorphism) A : V →W such that

∀v ∈ V : ∥Av∥W = ∥v∥V .

Example 2.11. The isometries of Euclidean space (Rn, d2) are translations, ro-
tations and reflections and compositions thereof (euclidean group).
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Definition 2.12 (Pointwise and uniform convergence).
Let X be a set, Y a metric space and

fn : X → Y, n ∈ N and f : X → Y

both functions.

1. We say that fn converges pointwise to f , if

∀x ∈ X : lim
n→∞

dY (fn(x), f(x)) = 0. ⇔ lim
n→∞

fn(x) = f(x)

2. We say that fn converges uniformly to f , if

lim
n→∞

sup
x∈X

dY (fn(x), f(x)) = 0

If (Y, ∥ · ∥) is a normed space, then fn → f uniformly, if and only if

lim
n→∞

∥fn − f∥∞ = 0

Example 2.13. fn : [0, 1] → [0, 1], x 7→ fn(x) = xn, then pointwise

fn(x)
n→∞−→ f(x) =

{
0 for x < 1

1 for x = 1
.

However, (fn) does not converge uniformly to f since sup
x∈[0,1]

|fn(x)− f(x)| = 1

Definition 2.14 (Uniform limits of continuous functions are continuous).
Let (X, T ) a topological and (Y, d) a metric space. Let fn : X → Y be a sequence
of continuous functions and let fn → f uniformly. Then f is continuous.

Corollary 2.15. Let X be a topological space, (Y, ∥ · ∥Y ) a complete normed
space and Cb(X,Y ) the space of continuous bounded functions equipped with the
∥ · ∥∞-norm.

∥f∥∞ = sup
x∈X

∥f(x)∥Y

Then the normed space (Cb(X,Y ), ∥ · ∥∞) is complete.

Definition 2.16 (Open cover and finite subcover).
Let (X, T ) be a topological space and Y ⊂ X. A family (Ui)i∈I of open sets,
Ui ∈ T ∀i ∈ I, is called an open cover of Y , if

Y ⊂
⋃
i∈I

Ui

A set K ⊂ X is called compact , if any open cover (Ui)i∈I of K admits a finite
subcover, i.e. there exists i1, . . . , in ∈ I such that:

K ⊂
⋃

i=i1,...,in

Ui
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Example 2.17. 1. Every finite subset K = {x1, . . . , xn} of a topological
space is compact.

2. (0, 1] ⊂ R is not a compact set. The open cover (0, 1] ⊂
∞⋃
n=2

( 1n , 2) admits

no finite subcover.

Theorem 2.18 (Bolzano-Weierstraß). Let K ⊂ X be compact. Then any se-
quence in K has a cluster point in K.

Exercise 2.3. Proof Theorem 2.18.

Remark 2.19. In metric spaces also the converse is true.

Proposition 2.20. Let f : X → Y be a continuous function and K ⊂ X a
compact set. Then also f(K) ⊂ Y is compact.

Proposition 2.21. 1. Let X be a topological space and K ⊂ X compact.
Then any close subset A ⊂ K is also compact.

2. If X is a Hausdorff space and K compact, then K is closed.

Definition 2.22 (Bounded sets and the diameter of a set).
Let X be a metric space.

1. A subset B ⊂ X is bounded , if

∃C ∈ R∀x, y ∈ B : d(x, y) ≤ C

2. The diameter of the set Y ⊂ X is

diam(Y ) = sup{d(x, y) | x, y ∈ Y } ∈ [0,∞) ∪ {∞}

Theorem 2.23.
Let X be a metric space and K ⊂ X compact. The K is bounded and closed.

Theorem 2.24 (Heine-Borel). A subset K of a finite-dimensional normed space
is compact if it is bounded and closed.

Theorem 2.25 (Weierstraß). Let f : K → R be a continuous function and K
compact. Then f is bounded (f(K) ⊂ R is bounded) and attains its maximum
and its minimum.

Definition 2.26 (Equicontinuity).
Let X,Y be metric spaces and A ⊂ C(X,Y ). Then the set A is called equicon-
tinuous at x ∈ X, if

∀ε > 0∃δ > 0 ∀f ∈ A : f(Bδ(x)) ⊂ Bε(f(x)) .
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Theorem 2.27 (Arzela-Ascoli). Let X be a compact metric space and consider
C(X, C) equipped with the ∥ ·∥∞-norm. A subset K ⊂ C(X,C) is compact, if and
only if it is closed, bounded pointwise (i.e. ∀x ∈ X:

sup
f∈K

|f(x)| <∞)

and equicontinuous.

Definition 2.28 (Connected, disconnected and path connected spaces).
Let X be a topological space. If X is the union of two disjoint, open, non-empty
sets, then X is disconnected , otherwise connected .
X is path-connected , if any two points x0, x1 ∈ X can be connected by a contin-
uous path, i.e. there exists

γ : [0, 1] → X

continuous, with γ(0) = x0 and γ(1) = x1.

Proposition 2.29. If X is path-connected then X is connected.

Proposition 2.30. Let O be an open subset of a normed space. Then O is
connected, if and only if it is path connected.

Proposition 2.31. Let f : X → Y be continuous and A ⊂ X (path) connected.
Then also f(A) ⊂ Y is (path) connected.

Definition 2.32 (Domain).
A non-empty, open, connected subset D ⊂ X of a topological space X is called
domain.

Definition 2.33 (Bounded functions).
A function f : X → Y with X a set and (Y, d) a metric space, is called bounded,
if and only if f(X) ⊂ Y is bounded.

Definition 2.34 (Bounded linear maps and their norms).
A linear map A : V →W between normed spaces is called bounded, if A(B1(0))
is bounded , i.e.

∃C ∈ R∀x ∈ V : ∥Ax∥W ≤ C∥x∥V .
The smallest such constant C is called the operator norm of A, i.e.

∥A∥op := sup{∥Ax∥W | x ∈ B1(0)}

The space of bounded linear maps V →W is denoted by

L(V,W ) or B(V,W )

and ∥ · ∥op is a norm on L(V,W ).

Remark 2.35. 1. If A ∈ L(V,W ) we have for all x ∈ V

∥Ax∥W ≤ ∥A∥op · ∥x∥V

2. If (W, ∥ · ∥W ) is a Banach space, then (L(V,W ), ∥ · ∥op) is also complete.

3. If dimV <∞, then all linear maps V →W are bounded.



Chapter 3

Differential calculus

Remark 3.1. Recall that for a function f : R ⊃ D → R

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

= lim
h→0

f(x0 + h)− f(x0)

h

This can also be formulated with sequences:

∀(xn) ⊂ D\{x0}, lim
n→∞

xn = x0 : lim
n→∞

f(xn)− f(x0)

xn − x0

Definition 3.2 (Partial derivative).
Let n ∈ N, D ⊂ Rn open, (W, ∥·∥) a normed space. For x ∈ D and j ∈ {1, . . . , n}
a function f : D → W is called partially differentiable in the jth coordinate
direction at x, if the limit:

lim
h→0

f(x+ hej)− f(x)

h
= lim

h→0

f(x1, x2, . . . , xj + h, . . . , xn)− f(x1, . . . , xn)

h

exists. One writes:

∂f

∂xj
(x) = ∂jf(x) := lim

h→0

f(x+ hej)− f(x)

h

and calls the vector ∂jf(x) ∈W the jth partial derivative at x.
If f is partially differentiable and the partial derivatives ∂jf : D → W are
continuous functions, then f is called continuously partially differentiable. The
vector space of the continuous partially differentiable functions on D ⊂ Rn is
denoted by C1(D,W ). The gradient of f at x is

∇f(x) := (∂1f(x), . . . , ∂nf(x)) ∈Wn

Definition 3.3 (Vector field).
A map f : Rn ⊃ D → Rn is called a vector field .

13



3. Differential calculus 14

Example 3.4. The gradient ∇f : D → Rn of a function f : Rn ⊃ D → R defines
a vector field.

Definition 3.5 (Higher order partial derivatives). A function f : Rn ⊃ D →W
(with W being a K vector space) is called r-times continuously partially differ-
entiable, if for all j = (j1, . . . , jr), ji ∈ {1, . . . , n}

1. f is c.p.d.

2. ∂j1f is c.p.d.

3. ∂j2∂j1 is c.p.d.

...

4. ∂jr . . . ∂j1f is continuous

The K vector space of r-times c.p.d. functions is denoted by Cr(D,W ).

Definition 3.6. Let D ⊂ Rn, g ∈ C1(D,Rn), f ∈ C2(D,R). Then:

div g : D → R, x 7→ div g(x) =
n∑
j=1

∂gj
∂xj

(x)

is called the divergence of g,

curl g : D → Rn, x 7→ curl g(x) =

 ∂2g3(x)− ∂3g2(x)
∂3g1(x)− ∂1g3(x)
∂1g2(x)− ∂2g1(x)


for n = 3 is called the curl of g, and:

∆f : D → R, x 7→ ∆f(x) = div(∇f)(x) =
n∑
j=1

∂2f

∂x2j
(x)

is called the Laplace of f .

Example 3.7. Let g : Rn → Rn, x 7→ g(x) = x (g = id) and f : Rn\{0} → R,
x 7→ ∥x∥2. Compute div g and ∆f .

Theorem 3.8 (Schwarz).
Let f ∈ C2(D,W ), D ⊂ Rn. Then ∀x ∈ D, j, i ∈ {1, . . . , n}

∂j∂if(x) = ∂i∂jf(x) .

Corollary 3.9. Let D ⊂ R3, f ∈ C2(D,R) and g ∈ C2(D,R3). Then curl(∇f) =
0 and div(curl g) = 0.
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Definition 3.10 (Directional derivative). Let V be a real, normed space, W a
normed space, D ⊂ V open and f : D → W . Then the directional derivative of
f at x ∈ D in the direction v ∈ V is defined

∂vf(x) = lim
h→0

f(x+ hv)− f(x)

h
=

d

dh
f(x+ hv)

∣∣
h=0

,

if the limit exists.

Example 3.11. For f : Rn →W we have ∂ejf(x) = ∂jf(x).

3.1 The derivative as linear approximation

For f : R →W differentiability at x0 ∈ R means

lim
x→x0

(
f(x)− f(x0)

x− x0
− f ′(x0)

)
= lim

x→x0

φ(x, x0)

x− x0

where φ(x, x0) = f(x)− f(x0)− f ′(x0)(x− x0) or, after reshuffling

f(x) = f(x0) + f ′(x0)(x− x0) + φ(x, x0)

where
φ(x, x0) = o(|x− x0|) :⇔ lim

x→x0

|φ(x, x0)|
|x− x0|

= 0

The map R → W, x 7→ f ′(x0) · x is R-linear and the map R → W, x 7→
f(x0)+f

′(x0)(x−x0) is affine-R-linear. Hence, we think of f(x0)+f ′(x0)(x−x0)
as the (affine) linear approximation to f near x0.

Definition 3.12 (Total derivative).
Let V be finite-dimensional real vector space, W a normed space, G ⊂ V open
and f : G → W . We call f differentiable at x0 ∈ G, if there exists an R-linear-
map A : V →W such that:1

lim
x→x0

f(x)− f(x0)−A(x− x0)

∥x− x0∥V
= 0

Then A is uniquely determined by the above equation, is denoted by Df |x0 , and
called the total derivative or the differential of f at x0.
If f : G → W is differentiable at all x ∈ G, then f is called differentiable on G
and:

Df : G→ L(V,W ), x 7→ Df |x
is a function on G taking values in the linear maps from V to W .

1Here ∥ · ∥V is any norm on V , since V is a finite-dimensional vector space
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Exercise 3.1. Show that the R-linear map A in Definition 3.12 is unique.

Remark 3.13. f : G → W is differentiable at x0 ⇒ f(x) = f(x0) + Df |x0(x −
x0) + o(∥x− x0∥V )

Example 3.14. Let L : V →W be a R-linear map. Then

L(x) = L(x0 + x− x0) = L(x0) + L(x− x0) = L(x0) +DL|x0(x− x0)

and hence DL|x0 = L.

Theorem 3.15 (Jacobi matrix).
Let G ⊂ Rn and let f : G→ Km be differentiable at a point x0 ∈ G. Then

(Df |x0)ij =
∂fi
∂xj

(x0)

or, more explicitly

Df |x0 =

 ∂1f1(x0) . . . ∂nf1(x0)
...

...
∂1fm(x0) . . . ∂nfm(x0)

 =

 ∇f1(x0)
...

∇fm(x0)


the Jacobian matrix.

Theorem 3.16. Let G ⊂ Rn open and f ∈ C1(G,Km)2. Then f is differentiable.

cont. part. diff. ⇒ differentiable ⇒ part. diff.
⇓

continuous

None of the implications holds in the reversed direction! But cont. part. diff. ⇔
differentiable with continuous derivative.

Theorem 3.17 (Chain rule). Let U, V be finite dimensional real vector spaces,
W a normed space, G ⊂ U , H ⊂ V open and g : G→ V , f : H →W maps with
g(G) ⊂ H, i.e.

U ⊃ G H ⊂ V W
g f

If g is differentiable at x ∈ G and f is differentiable at g(x) ∈ H, then f ◦ g :
G→W is differentiable at x and

D(f ◦ g)|x = Df |g(x) ·Dg|x
2continuously partially differentiable
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Corollary 3.18. For a function f ∈ C1(G,W ), G ⊂ V , x0 ∈ G, and v ∈ V we
have

∂vf(x0) = Df |x0v

Exercise 3.2. Proof Corollary 3.18.

We now want to state the Taylor theorem. To do so we, however, have to
understand higher-order differentials. For f : G → W , with G ⊂ V an open
subset, the differential Df is a map

Df : G→ L(V,W ).

Thus the second derivative D(Df) is a map

D(Df) : G→ L(V,L(V,W )) ∼= L2(V × V,W )

(= bilinear maps V × V →W ) and the kth derivative:

Dkf : G→ Lk(V × . . .× V︸ ︷︷ ︸
k-times

,W )

Theorem 3.19 (Taylor). Let G ⊂ V open, x0 ∈ G, and δ > 0 such that Bδ(x0) ⊂
G. Then for any function f ∈ Ck(G,W ) and x ∈ Bδ(x0)

f(x) = f(x0) +Df |x0(x− x0) +
1

2
D2f |x0(x− x0, x− x0)

+
1

k!
Dkf |x0(x− x0, . . . , x− x0) + o(∥x− x0∥kV )

Definition 3.20 ((Strict) local maximum). Let X be a topological space and
f : X → R. A point x0 ∈ X is called a (strict) local maximum of f , if

∃U ⊂ U(x0) : ∀x ∈ U\{x0} : f(x)
≤
<
f(x0)

The definition for a local minimum is analogous.

Theorem 3.21. Let G ⊂ V and f ∈ C1(G,R) have a local extremum at x0 ∈ G.
Then Df |x0 = 0.

Theorem 3.22. Let G ⊂ V and f ∈ C2(G,R) and x0 ∈ G such that Df |x0 = 0.

1. If D2f |x0(h, h) > 0 ∀h ∈ V \{0}, then f has a strict local minimum at x0

2. D2f |x0(h, h) < 0 ∀h ∈ V \{0}, then f has a stric local maximum at x0

3. If D2f |x0 is indefinite, then f has no local extremum at x0

Theorem 3.23 (Mean value theorem in one dimension). For a function f :
[a, b] → R continuous and differentiable on (a, b). Then ∃x0 ∈ (a, b):

f ′(x0) =
f(b)− f(a)

b− a
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Theorem 3.24. Let G ⊂ Rn and f : G→ Kn be continuously differentiable. Let
γ : [a, b] → G continuously differentiable. Then

f(γ(b))− f(γ(a)) =

b∫
a

Df |γ(t)︸ ︷︷ ︸
Kn←Rn

γ′(t)︸︷︷︸
∈Rn

dt

Theorem 3.25 (Mean value theorem). G ⊂ Rn, f ∈ C1(G,Km). Let x ∈ Rn
such that {x+ th | t ∈ [0, 1]} ⊂ G. Then

f(x+ h)− f(x) =

 1∫
0

Df |x+th dt

 · h .

Corollary 3.26. The setup is as in the Theorem 3.25. Then

∥f(x)− f(y)∥ ≤
∥∥∥ 1∫

0

Df |x+th dt
∥∥∥
op︸ ︷︷ ︸

sup
z∈xy

∥Df |z∥

·∥x− y∥

For f : Rn → R we obtain again

f(y)− f(x) = Df |z · (y − x)

Definition 3.27 (Equivalence of norms).
Two norms ∥·∥a and ∥·∥b on a vector space V are equivalent, if ∃c, C > 0∀x ∈ V :

c∥x∥a ≤ ∥x∥b ≤ C∥x∥a .

Theorem 3.28. On finite dimensional vector spaces, all norms are equivalent.

Theorem 3.29. All finite dimensional normed spaces are complete (Banach
spaces).

Definition 3.30 (Frechet derivative). LetX and Y be Banach spaces andG ⊂ X
open. A map f : G → Y is differentiable at x ∈ G, if there exists a continuous
linear map A : X → Y such that

f(x+ h) = f(x) +Ah+ o(∥h∥X)

for h in a neighbourhood of 0 ∈ X. The notation A = Df |x remains.

Example 3.31. X = C2([0, T ],Rn). An element x ∈ X is a map x : [0, T ] → Rn.
We can equip this space with a norm

∥x∥X = ∥x∥∞ + ∥ẋ∥∞ + ∥ẍ∥∞
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an turn it into a Banach space with respect to that norm. The action is given by

S : X → R x 7→ S(x) =

T∫
0

L(x(t), ẋ(t)) dt ,

where L : Rn×Rn → R, (q, v) 7→ L(q, v) ∈ C2 (e.g. L(q, v) = 1
2m∥v∥2−V (q)).

We compute the derivative DS|x of S: x, h ∈ X

S(x+ h) =

T∫
0

L
(
x(t) + h(t), ẋ(t) + ḣ(t)

)
dt

=

T∫
0

(
L(x(t), ẋ(t)) +

{
DqL|(x(t),ẋ(t)) · h(t) +DvL|(x(t),ẋ(t)) · ḣ(t)

})
+ o(∥h∥2X)

= S(x) +

T∫
0

(
DqL|(x(t),ẋ(t)) · h(t) +DvL|(x(t),ẋ(t)) · ḣ(t)

)
︸ ︷︷ ︸

DS|x·h

+o(∥h∥2X)

= S(x) +DvL|(x(T ),ẋ(T )) · h(T )−DvL|(x(0),ẋ(0))

+

T∫
0

(
DqL|(x(t),ẋ(t)) −

(
d

dt
DvL|(x(t),ẋ(t))

))
h(t) dt+ o(∥h∥2X)

for h ∈ X such that h(0) = h(T ) = 0

DS|xh = 0 ⇔ DqL|(x(t),ẋ(t)) −
d

dt
DvL|(x(t),ẋ(t)) = 0

the Euler-Lagrange equation.

Definition 3.32 (Dense subspace).
A subset A ⊂ X of a topological space (X, T ) is called dense, if and only if
A = X.

Remark 3.33. If A ⊂ X is dense, then A ∩O ̸= ∅ for any O ∈ T \{∅}

Proposition 3.34. Let f, g : X → Y be continuous functions, Y a Hausdorff
space, and A a dense set. Then

f |A = g|A ⇒ f = g

Exercise 3.3. Proof Proposition 3.34.



Chapter 4

Implicit functions and ordinary
differential equations

4.1 Implicit function theorem

We ask the question of when it is possible to smoothly parameterise the level sets
of a function.

F : Rn × Rm︸ ︷︷ ︸
Rn+m

→ Rm, (x, y) 7→ F (x, y)

If F is "smooth", then we expect the level sets to be n-dimensional submanifolds
of the domain Rn+m, i.e. sets that locally looks like the graph of a smooth
function g : Rn → Rm

Theorem 4.1 (Implicite). Let G ⊂ Rn+m be open, F ∈ C1(G,Rm), and

N := {(x, y) ∈ G | F (x, y) = 0}.

If for (a, b) ∈ N it holds that the matrix:

DyF |(a,b) =


∂F1
∂y1

. . . ∂F1
∂ym

...
...

∂Fm
∂y1

. . . ∂Fm
∂ym

 (a, b)

is invertible, then there exists open neighbourhoods U1 ⊂ Rn of a and U2 ∈ Rm
of b with U1 × U2 ⊂ G and a function g ∈ C1(U1, U2) such that

N ∩ (U1 × U2) = graph(g)

(more explicit: ∀(x, y) ∈ U1 × U2 : F (x, y) = 0 ⇔ g(x) = y)
(⇔ one can solve F (x, y) = g(x) locally for y, F (x, g(x)) = 0)
Moreover,

Dg|x = −
(
DyF |(x,g(x))

)−1 ·DxF |(x,g(x))

20
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Definition 4.2. Let G,H ⊂ Rn be open. A map C1(G,H) is called a diffeomor-
phism, if it is bijective and also the inverse f−1 ∈ C1(H,G).

Exercise 4.1. 1. Prove that the differential Df |x : Rn → Rn of a diffeomor-
phism f is always invertible for all x ∈ G.

2. Give an example of a bijection f ∈ C1 such that f−1 is not continuously
differentiable.

Theorem 4.3 (Inverse function theorem). Let G ⊂ Rn be open and f ∈ C1(G,Rn).
If for a ∈ G it holds that Df |a is invertible then there exists an open neighbour-
hood U of a such that f |U : U → f(U) ⊂ Rn is a diffeomorphism.

Definition 4.4 (Local extremum under constraint).
Let G ⊂ Rn be open and f, h ∈ C1(G,R). Let N = {x ∈ G | h(x) = 0} and
a ∈ N . We say that f has a local extremum (maximum or minimum) at the point
a under the constraint h = 0 if f |N has a local extremum at a.

Theorem 4.5 (Necessary condition for local extremum under constraint). Let
G, f, h,N as above. If a ∈ N is a regular point of h (i.e. ∇h|a ̸= 0) and a local
extremum of f under the constraint h = 0, then there exists λ ∈ R such that:

∇f(a) = λ∇h(a) (4.1)

with λ being the Lagrange parameter.

Theorem 4.6 (Sufficient condition for local extremum under constraint). Let
G ⊂ Rn be open, f, h ∈ C2(G,R). Let for a ∈ N the necessary condition Eq. (4.1)
be satisfied, i.e. there exists λ ∈ R such that ∇F (a) = ∇(f − λh)(a) = 0, then:

1. If D2F |a(v, v) > 0 for all v ∈ Rn\{0}, Dh|Av = 0, then f has a strict local
minimum at a under the constraint h = 0.

2. If D2F |a(v, v) < 0 for all v ∈ Rn\{0}, Dh|Av = 0, then f has a strict local
maximum at a under the constraint h = 0.

3. If D2F |a(v, v)0 is indefinite, then f has no local extremum at x0.

Remark 4.7. If h : G ⊂ Rn → Rk, then N = {h = 0} is a n − k-dimensional
submanifold. In this case, the necessary condition for extremum under constraint
N becomes

∇f(a) ∈ span{∇h1(a),∇h2(a), . . . ,∇hk(a)}
⇔ ∃λ ∈ Rk : ∇(f − λ · h)|a = 0 ⇔ ∇f = λ1∇h1 + . . .+ λk∇hk .
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4.2 Ordinary differential equations

Definition 4.8 (Autonomous first order ODE). Let G ⊂ Rn open, v ∈ C(G,Rn)
a continuous vector field, and I ⊂ R an open interval containing 0 ∈ R. A curve
γ ∈ C1(I,G) is a solution of the autonomous first order ODE

γ′ = v(γ) with initial datum x0 ∈ G ,

if γ′ = v ◦ γ, i.e. γ′(t) = v(γ(t)) ∀t ∈ I, and γ(0) = x0. In this context, γ is also
called an integral curve of v.

Exercise 4.2. Determine and draw some integral curves for the vector fields

v :R2 → R2, (x, y) 7→ v(x, y) =

(
−x
y

)
,

w :R2 → R2, (x, y) 7→ w(x, y) =

(
x
y

)
.

Definition 4.9 (Autonomous m’th-order ODE). Let m ∈ N. An autonomous
nth order ODE on a domain D ⊂ Rn is given by a continuous function

f : D × Rn × . . .× Rn︸ ︷︷ ︸
(m−1)-copies

→ Rn

and the equation
γ(m) = f(γ, γ′, γ′′, . . . , γ(m−1)) .

Now γ ∈ Cm(I,D) is called a solution with initial datum (x0, y1, . . . , ym−1), if

γ(m)(t) = f(γ(t), γ′(t), . . . , γ(m−1)(t)) ∀t ∈ I

and γ(0) = x0 and γ(j)(0) = yj ∀j = 1, . . . ,m− 1.

Definition 4.10 (Non-autonomous first order ODE). Let J ⊂ R be an open
interval. A continuous map

v : J ×D → Rn, (t, x) 7→ v(t, x)

is called a time-dependent vector field . The ODE

γ′ = v(t, γ) ,

is called a non-autonomous first order ODE . If I ⊂ J is an open subinterval,
t0 ∈ I, x0 ∈ D then γ : I → D is a solution with initial value x0 for initial time
t0, if

γ′(t) = v(t, γ(t)) ∀t ∈ I

and γ(t0) = x0.
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Remark 4.11. Non-autonomous first-order and autonomous m’th-order ODEs all
reduce to autonomous first-order ODEs.

Definition 4.12 (Local and global Lipschitz condition). Let U ⊂ R × Rn and
v ∈ C(U,Rn)

1. We say that v satisfies a Lipschitz condition, if there exists L ≥ 0 such that

∀(t, x), (t, y) ∈ U : ∥v(t, x)− v(t, y)∥ ≤ L∥x− y∥

2. We say that v satisfies a local Lipschitz condition, if every (t, x) ∈ U admits
a neighbourhood V ⊂ U such that v|V satisfies a Lipschitz condition.

Theorem 4.13 (Picard-Lindelöf). Let U ⊂ R × Rn be a domain and let v ∈
C(U,Rn) satisfy a local Lipschitz condition.

1. Local existence: For any (t0, x0) ∈ U there exists δ > 0 and a curve γ ∈
C1((t0 − δ, t0 + δ),Rn) that is a solution of γ′ = v(t, γ) with initial datum
γ(t0) = x0.

2. Uniqueness: If J ⊂ R is an interval with t0 ∈ J and γ̃ : J → Rn solves
γ′ = v(t, γ) with γ̃(t0) = x0, then

γ̃(t) = γ(t) ∀t ∈ J ∩ (t0 − δ, t0 + δ) .

Definition 4.14 (Maximal solution). Let v ∈ C(J ×G,Rn) satisfy a local Lip-
schitz condition. A solution γ : I → G of γ′ = v(t, γ) is called maximal solution,
if the following holds: If I ⊂ Ĩ ⊂ J and γ̃ : Ĩ → G is a solution of γ′ = v(t, x)
with γ̃|I = γ, then Ĩ = I.

Corollary 4.15. Under the conditions of the Picard-Lindelöf-theorem, there ex-
ists for any initial value a unique maximal solution.

Theorem 4.16. Let J = (j−, j+) ⊂ R, G ⊂ Rn a domain, and v ∈ C(J×G,Rn)
satisfy a local Lipschitz condition. Let γ : (t−(t0, x0), t+(t0, x0)) → G be the
unique maximal solution of γ′ = v(t, x) for the initial value (t0, x0) ∈ J × G. If
t+(t0, x0) < j+, then for any compact ⊂ G there exists 0 < τK < t+(t0, x0) such
that

γ(t) /∈ K ∀t ∈ (τK , t+(t0, x0)) .

Definition 4.17. A locally Lipschitz vector field v ∈ C(G,Rn) is complete, if
there exists a global solution γx0 ∈ C1(R, G) of γ′ = v(γ) with γx0(0) = x0 for
any initial value x0 ∈ G. The associated flow is:

Φ : R×G→ G, (t, x) 7→ Φ(t, x) = γx(t)

and
γt : G→ G, x 7→ Φt(x) = Φ(t, x)
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is called the flow map at time t. It satisfies

Φt ◦ Φs = Φt+s ∀t, s ∈ R

i.e.
R → Bij(G→ G), t 7→ Φt

is a groups action of (R,+) on the set G.

Theorem 4.18. If v satisfies a local Lipschitz condition and is complete, then
the corresponding flow maps Φt : G → G are continuous. If v ∈ C1, then the
flow maps Φt : G→ G are also C1.

4.3 Linear ordinary differential equations

Definition 4.19 (Non-autonomous homogeneous linear system). Let J ⊂ R
open interval, A : J → L(Rn) is continuous.

1. The ODE
γ′ = A(t)γ (v(γ) = A(t)γ)

is called a non-autonomous, homogeneous, linear system.

2. If b : J → Rn is continuous, then

γ′ = A(t)γ + b(t)

is called a non-autonomous, inhomogeneous, linear ODE.

Example 4.20. In the homogeneous autonomous case

γ′ = Aγ

the unique global solution with initial datum xo ∈ Rn is

γ(t) = eAtx0

where eAt =
∞∑
n=0

tnAn

n! .

Theorem 4.21. J ⊂ R open, A : J → L(Rn) and b : J → Rn continuous. Then
for very t0 ∈ J and x0 ∈ Rn there exists a unique maximal solution γ : J → Rn
of the ODE

γ′ = A(t)γ + b(t), with γ(t0) = x0 .



4. Implicit functions and ordinary differential equations 25

Lemma 4.22 (Grönwall). Let a < b and u : [a, b] → [0,∞) continuous. Assume
∃L,C ≥ 0 such that for t ∈ [a, b]:

u(t) ≤ C + L

t∫
a

u(s) ds .

Then
u(t) ≤ CeL(t−a) .

Theorem 4.23 (The propagator of a non-autonomous, homogeneous linear sys-
tem). J ⊂ R open, A : J → L(Rn) continuous constituting a non-autonomous,
homogeneous linear system. For fixed t0 ∈ J we define

Φt : Rn → Rn, x0 7→ γx0(t) ∀t ∈ J (4.2)

with γx0(t0) = x0 and call it the flow map (Eq. (4.2)) or the propagator.

Theorem 4.24. Φt : Rn → Rn from Eq. (4.2) is a linear isomorphism.

We hence get that the solutions {γ ∈ C1(J,Rn) | γ′ = A(t)γ} with A as in
Theorem 4.23, form a n-dimensional subspace of C1(J,Rn).

Theorem 4.25 (Variation of constants). Let Φt : Rn → Rn be the propagator of
a homogeneous linear system γ′ = A(t)γ and b : J → Rn continuous. Then the
solution of the inhomogeneous equation:

γ′ = A(t)γ + b(t) with γ(t0) = x0

is

γ(t) = Φt

(
x0 +

t∫
t0

Φ−1s b(s) ds
)
.

This approach is called the variation of constants.



Chapter 5

Measure and integration theory

Remark 5.1. 1. Idea of the Riemann Integral: Approximate f by "stair func-
tions", i.e. decompose the domain into intervals (rectangles, cubes, ...) and
use

g(x) =

n∑
i=1

αiχ[ai,ai+1](x)

where for A ⊂ R the characteristic function of A is defined:

χA(x) =

{
1 x ∈ A
0 x /∈ A

The integral of a stair function is:∫
g(x)dx =

n∑
i=1

αi(ai+1 − ai)

2. Idea of the Lebesgue integral: Decompose the range of the function into
intervals [αi, αi+1) and approximate by "simple functions"

g(x) =
n∑
i=1

αiχAi(x)

e.g. Ai = f−1([αi, αi+1)) (not interval in general).
The integral of a simple function is given by:∫

g(x) dx =
n∑
i=1

αλ(Ai)

where λ(Ai) is the "length" of Ai (area, volume, measure).

Example 5.2. f(x) = χQ∩[0,1](x) is not Rieman integrable, but it is Lebesgue
integrable:

1∫
0

f(x)dx = 1 · λ(Q ∩ [0, 1]) + 0 · λ([0, 1]\Q) = 0

26
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Remark 5.3. Two advantages of the Lebesgue integral:

1. There are more integrable functions, meaning spaces of Lebesgue integrable
functions are complete.

2. The Lebesgue integral can be defined on all spaces where one can define a
measure λ (not only on R or Rn).

5.1 Basic notions of measure theory

In 1924 Banach and Tarski managed to prove that there exists no volume map
vol : P(R3) → [0,∞) such that

1. vol(∅) = 0, vol([0, 1]3) = 1

2. X1, ..., Xk ∈ P(R3) pairwise disjoint, then

vol
( k⋃
i=1

Xi) =
k∑
i=1

vol(Xi)

3. Invariant under transformations. Let v ∈ R3, A ∈ O(3), X ∈ R3, then

vol({Ax+ v : x ∈ X}) =: vol(A ·X + v) = vol(X)

To circumvent this problem σ-algebras and measure theory was created.

Definition 5.4 (σ-algebra). A family A ⊂ P(X) of subsets of a set X is called
σ-algebra, if

1. ∅ ∈ A

2. A ∈ A ⇒ AC ∈ A

3. Ak ∈ A for k ∈ N ⇒
∞⋃
k=1

Ak ∈ A

The elements of A are called the A-measurable sets.

Proposition 5.5. Let A be a σ-algebra on X. Then

1. X ∈ A

2. Ak ∈ A for k ∈ N ⇒
∞⋂
k=1

Ak ∈ A

3. A,B ∈ A ⇒ A ∪B ∈ A, A ∩B ∈ A, and A\B ∈ A
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Exercise 5.1. Proof Proposition 5.5.

Example 5.6. 1. P(X) and {∅, X} are σ-algebras on X

2. If Aj , j ∈ I are, σ-algebras on X, so is
⋂
j∈I

Aj

Theorem 5.7 (Generating system). Let F ⊂ P(X). Then the σ-algebra gener-
ated by F is:

AF =
⋂

B is σ-alg.
F⊂B

B

Any F ⊂ P(X) that generates A is called generating system for A.

Definition 5.8 (Borel σ-algebra). Let (X, T ) be a topological space. Then

AT = B

is called the Borel σ-algebra on X.

Definition 5.9 (Measure). Let A ⊂ P(X) be a σ-algebra. A map µ : A → [0,∞]
is called a measure, if

1. µ(∅) = 0

2. For pairwise disjoint sets Ak ∈ A, k ∈ N,

µ
( ∞⋃
k=1

Ak

)
=
∞∑
k=1

µ(Ak) (σ-additivity)

We further call µ

1. a finite measure, µ(X) <∞,

2. a σ-finite measure, if there exists a decomposition X =
∞⋃
k=1

Ak such that

µ(Ak) <∞ ∀k.

The pair (X,A) is called a measurable space, the triple (X,A, µ) is called a
measure space.

Example 5.10. Let X be a set and x0 ∈ X. Then

v : P(X) → [0,∞], A 7→ v(A) =

{
|A| if A is finite
∞ otherwise

"counting measure"

and

δx0 : P(X) → [0,∞], A 7→ δx0(A) =

{
1 if x0 ∈ A

0 otherwise
"Dirac measure at x0”

are measures.
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Proposition 5.11. Let µ be a measure on (X,A) and A,B ∈ A. Then

µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B)

and if A ⊂ B

µ(B) = µ(A) + µ(B\A) ⇒ µ(A) ≤ µ(B). monotony

For Aj ∈ A, j ∈ N,

µ
( ∞⋃
j=1

Aj

)
≤
∞∑
j=1

µ(Aj) sub-additivity

and if Aj ⊂ Aj+1 ∀j, then

lim
j→∞

µ(Aj) = µ
( ∞⋃
j=1

Aj

)
Definition 5.12 (Measurable function and the push-forward of a measure).
Let (X,A) and (Y, C) be measure spaces. A map f : X → Y is called A- C-
measurable, if

C ∈ C ⇒ f−1(C) ∈ A.
If µ is a measure on (X,A) then

f∗µ : C → [0,∞], C 7→ f∗µ(C) = µ
(
f−1(C)

)
is called its push-forward under f .

Remark 5.13 (Terminology from probability theory). A measure space (X,A, µ)
with µ(X) = 1 is called a probability space. Then the elements A ∈ A are called
events and µ(A) the probability of the event. Measurable functions f : X →
Y , (Y, C) a measurable space, are called random variables and the probability
measure f∗µ is called the distribution of f .

Theorem 5.14 (Lebesgue measure). There is a unique measure λ on (Rn,B) that
is translation invariant (i.e. λ(A+ x) = λ(A), ∀A ∈ B∀x ∈ Rn) and normalised
to λ((0, 1)n) = 1. It is called the Lebesgue-Borel measure and its completion is
called the Lebesgue measure.

Exercise 5.2. Show that λ(Q) = 0.

5.2 Basic notions of integration theory

Definition 5.15 (Simple function).
A function g : X → R = R∪ {−∞,+∞} is called simple, if g(X) = {α1, . . . , αk}
is finite, i.e.

g(x) =

k∑
j=1

αjχAj (x) with Aj ∩Ai = ∅ for i ̸= j
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Definition 5.16 (Integral of non-negative measurable functions).
Let (X,A, µ) be a measure space and g : X → [0,∞] a simple and measurable,
then ∫

X

g dµ =
k∑
j=1

αjµ(Aj)

For a measurable function f : X → [0,∞]∫
X

f dµ = sup
{∫
X

g dµ
∣∣∣ g : X → [0,∞] simple, measurable and g ≤ f

}
Definition 5.17 (Integral of measurable functions).
A measurable function f : X → R is integrable, if for f+ = max{f, 0} and
f− = max{−f, 0} it holds that∫

f+ dµ <∞
∫
f− dµ <∞.

Then ∫
f dµ =

∫
f+ dµ−

∫
f− dµ

Proposition 5.18. Let f, g : X → R be measurable and integrable and α ∈ R.
Then

1.
∫
αf dµ = α

∫
f dµ

2.
∫
(f + g) dµ =

∫
f dµ+

∫
g dµ

3. f ≤ g ⇒
∫
f dµ ≤

∫
g dµ

Theorem 5.19 (Beppo-Levi, Monotone convergence). Let fn : X → [0,∞]
measurable and fn ≤ fn+1 for all n ∈ N. Let f := lim

n→∞
fn (pointwise), then

lim
n→∞

∫
fn dµ =

∫
f dµ

Corollary 5.20. Let fn : X → [0,∞] be measurable. Then∫
lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
fn dµ

Definition 5.21 (Almost everywhere).
We say that a property of a point x ∈ X holds almost surely or almost everywhere
with respect to a measure µ on X, if it holds for x ∈ A ⊂ X and

µ(X\A) = 0,

i.e. if it fails to hold a null set only.
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Example 5.22. 1. A real number is almost surely irrational with respect to
Lebesgue’s measure on R.

2. Let f : X → [0,∞] be measurable. Then∫
X

f dµ = 0 ⇔ f = 0 almost everywhere

3. Changing an integrable function f on a null set does not change
∫
f dµ.

4. For integrable functions we do not include ±∞ into the range anymore.

Remark 5.23. 1. Every Rieman integrable function f : [a, b] → R is also
Lebesgue integrable and the integrals coincide.

2. A function f : X → C is integrable, if |f | is integrable and∫
f dµ =

∫
Re f dµ+ i

∫
Imf dµ

3. Analogously for f : X →W (W -finite dimensional).

4. For f : X →W , W a Banach space, the generalisation is called the Bochner
integral.

Definition 5.24 (Lp-spaces).
Let (X,A, µ) be a measure space and 1 ≤ p <∞. Then

Lp(X,µ) = {f : X → C | f is measurable and |f |p is integrable}

and for f ∈ Lp(X,µ)

∥f∥Lp =

(∫
|f |p dµ

) 1
p

<∞ .

Moreover, Lp(X,µ) = Lp(X,µ)/ ∼ with respect to the equivalence relation

f ∼ g ⇔ f = g almost everywhere .

Theorem 5.25 (Completeness of Lp-spaces). Let (X,A, µ) be a measure space
and 1 ≤ p ≤ ∞. Then (Lp(X,µ), ∥ · ∥Lp) is a Banach space.

Theorem 5.26 (Dominated convergence). Let fn : X → C be measurable, n ∈ N,
and assume that f(x) = lim

n→∞
fn(x) exists for almost all x ∈ X. If for some

g ∈ Lp(X,µ), 1 ≤ p < ∞ it holds that |fn| ≤ |g| almost everywhere and for all
n ∈ N then fn, f ∈ Lp(X,µ) and

lim
n→∞

∥fn − f∥Lp = 0

i.e. fn → f in Lp(X,µ).
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Definition 5.27 (L∞ and the essential supremum).
Let (X,A, µ) be a measure space. For measurable f : X → C (|f | : X → [0,∞])
we define

∥f∥L∞ = inf
{
0 ≤ λ ≤ ∞ | µ

(
|f |−1((λ,∞])

)
= 0

}
= ess sup |f |.

Using this definition one can define

L∞(X) = {f : X → C | f measurable and ∥f∥L∞ <∞}

and
L∞(X) = L∞(X)/ ∼

Example 5.28. 1. If µ(X) <∞ and f ∈ L∞(X), then∫
X

|f | dµ ≤
∫
X

∥f∥L∞︸ ︷︷ ︸
=∥f∥∞

dµ = ∥f∥L∞ · µ(X)

In particular L∞(X) ⊂ L1(X) in this case. Actually, Lp(X) ⊂ Lq(X) if
p > q and µ(X) <∞.

2. X = Rn, µ = λn, then µ(X) = ∞ and Item 1 does not apply. We prove
this by the following: Let α ∈ R

fα : Rn \{0} → R, x 7→ fα(x) =
1

∥x∥α

(a) A = B1(0) ⊂ Rn. Then for α > 0,

∫
B1(0)

|fα|p dλ =

∫
B1(0)

1

∥x∥α+p
dλ = Cn

1∫
0

1

rαp
rn−1 dr

= Cn

1∫
0

1

rαp+1−n dr =

{
<∞ if α < n

p

= ∞ if α ≥ n
p

We also could have used Lp(B1(0)) ⊊ Lq(B1(0)) for p ≥ q.

(b) A = Rn \B1(0). Then

∫
A

|fα|p dλ =

∫
A

1

∥x∥α+p
dλ = Cn

∞∫
1

1

rαp
rn−1 dr

= Cn

∞∫
1

1

rαp+1−n dr =

{
<∞ if α > n

p

= ∞ if α ≤ n
p
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Putting both together we can conclude that neither Lp(Rn) ⊂ Lq(Rn) nor
Lq(Rn) ⊂ Lp(Rn) for p ̸= q.

3. At last we want to show that pointwise convergence does not imply conver-
gence in the Lp-norm. Let fn : R → R, x 7→ χ[n,n+1](x). Then for all p ≥ 1

fn ∈ Lp with ∥fn∥p = 1 and fn
p.w.−→ f = 0, but

∥fn − f∥Lp = ∥fn∥Lp = 1 .

This is because there exists no dominating function.

Theorem 5.29 (Hölder inequality). Let f, g : X → C be measurable and 1 ≤
p, q ≤ ∞ such that 1

p +
1
q = 1 (conjugated exponents) where 1

∞ = 0. Then

∥fg∥L1 ≤ ∥f∥Lp · ∥g∥Lq

Remark 5.30. For p = q = 2 this is the Cauchy-Schwarz inequality on the Hilbert
space L2. Hence for f, g ∈ L2 ⇒ fg ∈ L1, since∣∣∣ ∫ fg dµ

∣∣∣
=|⟨f,g|f,g⟩L2 |

≤
∫

|fg| dµ ≤ ∥f∥L2 · ∥g∥L2 .

Theorem 5.31 (Minkowski inequality). Let f, g : X → C be measurable and
1 ≤ p ≤ ∞. Then

∥f + g∥p ≤ ∥f∥p + ∥g∥p .

5.3 Product measures and Fubini’s theorem

Definition 5.32 (Product σ-algebras).
Let (X1,A1) and (X2,A2) be measurable spaces. Then A1 ⊗ A2 denotes the
product σ-algebra on X1 ×X2 generated by sets of the form A1 ×A2 ⊂ X1 ×X2

with A1 ∈ A1 and A2 ∈ A2, the so called product σ-algebra.

Example 5.33. Let Bn ⊂ P(Rn) be the Borel-σ-algebra. Then Bn = B1 ⊗ . . .⊗
B1.

Theorem 5.34. Let (X1,A1, µ1) and (X2,A2, µ2) be σ-finite measure spaces.
There exists a unique measure µ on A1 ⊗A2 such that for all A1 ∈ A1, A2 ∈ A2

µ(A1 ×A2) = µ1(A1) · µ2(A2),

called the product measure and denoted by µ = µ1 ⊗ µ2.

Example 5.35. The Lebesgue-Borel measure

λn = λ1 ⊗ . . .⊗ λ1.
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Theorem 5.36 (Tonelli). Let (X1,A1, µ1) and (X2,A2, µ2) be σ-finite measure
spaces. Let f : X1 ×X2 → [0,∞] be A1 ⊗A2-mensurable. Then∫

X1×X2

f d(µ1 ⊗ µ2) =

∫
X1

( ∫
X2

fx1 dµ2

︸ ︷︷ ︸
fct. of x1

)
dµ1

=

∫
X2

( ∫
X1

fx2 dµ1

)
dµ2

where fx1 : X2 → R, x2 7→ f(x1, x2).

Example 5.37. X1 = X2 = [0, 1], µ1 = λ1, µ2 = v the counting measure. Hence
(X2, µ2) is not σ-finite.

f : X1 ×X2 → [0,∞]

(x1, x2) 7→ δx1,x2 :=

{
1 if x1 = x2
0 otherwise

Now the results for the integrals. For the first integral, we calculate∫
f(x1, x2)︸ ︷︷ ︸
=fx2 (x1)

dµ1 = 0

and obtain ∫ (∫
fx2(x1) dµ1

)
dµ2 = 0

For the second integral, we calculate∫
f(x1, x2)︸ ︷︷ ︸
fx1 (x2)

dµ2 = 0 · µ2(χ{f=0}) + 1 · µ2(χ{f=1}) = 1

hence obtain ∫ (∫
fx1(x2) dµ2

)
dµ1 = 1.

I.e. the two integral do not agree.

Theorem 5.38 (Fubini). Let (X1,A1, µ1) and (X2,A2, µ2) be σ-finite measure
spaces and f : X1×X2 → C measurable. Then the following two statements hold.

1. We find the following equivalence:∫
X1

( ∫
X2

|fx1 | dµ2
)
dµ1 <∞ or

∫
X2

( ∫
X1

|fx2 | dµ1
)
dµ2 <∞

if and only if

f ∈ L1(X1 ×X2, µ1 ⊗ µ2) .
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2. If f ∈ L1(X1 ×X2, µ1 ⊗ µ2), then∫
X1×X2

f d(µ1 ⊗ µ2) =

∫
X1

( ∫
X2

fx1dµ2

)
dµ1

=

∫
X2

( ∫
X1

fx2dµ1

)
dµ2

Example 5.39. X = N,A = P(N), µ = v counting measure. f : X → R,
n 7→ f(n) (real sequences). The integral is then defined as:∫

X

f dµ =
∞∑
n=1

f(n)

Now we consider g : X ×X → R, (n,m) 7→ g(n,m). There appears the question
of whether it is possible to change the order of summation. Fubini’s theorem
allows us to answer yes to that question in the case of absolute convergence.
Hence if

∑
m

∑
n
|g(n,m)| <∞, or equivalently with the summation order changed,

we can change the summation.



Chapter 6

Physics preface

A physical theory is a (mathematical) model for how (parts of) the physical world
could work. Physics is about

1. inventing or discovering good "theories",

2. collecting empirical data (experiments),

3. comparing the empirical facts about our world with our theoretical worlds.

Quote from Democrit (400 B.C.):

"Apparently there is colour, apparently sweetness, apparently bitterness, while
in reality there are only atoms and empty space."

Modern physics uses mathematical models of the world, because (at least in
good models) empirical predictions can be deduced by mathematical methods
(computing, simulating, proving) in an unambiguous way.

6.1 Classical mechanics of point particles

6.1.1 Newtonian mechanics

Newton established a mathematical model for the motion of N particles (ap-
ples, planets, atoms, bullets, ...) in physical space and time. The Newtonian
representation of the physical space is E3 (three-dimensional euclidean space),
R3 after the choice of an origin and an orthonormal basis. The time in Newto-
nian mechanics is described by E1 (euclidean line), R after the choice of an origin.

Definition 6.1 (Configuration space of N point particles).

q ∈ R3N = R3 × . . .× R3︸ ︷︷ ︸
N -copies

= configuration space.

36
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q = (q1, q2, . . . , qN ), qj ∈ R3 position of the jth particle.

In this model, the "world" is completely specified by the position of all par-
ticles at all times, i.e. by a curve

γ : R → R3N , t 7→ γ(t)

in configuration space.

The physical "law" is a second-order ODE for γ, Newton’s law:

γ̈ =M−1 · F (t, γ, γ̇)

with M being the mass matrix, F (t, γ, γ̇) the force field and γ̈ the acceleration.
Only the solutions to this ODE are possible worlds, according to Newtonian
mechanics. Assuming sufficient regularity of F , a unique solution is determined
by specifying the positions γ(t0) and the velocities γ̇(t0) at some time t0 ∈ R ⇒
predictions of the theory.
The explicit specification of M and F is also part of the law.

Example 6.2 (Gravitating bodies).

M =

m1 0
. . .

0 mN


with mi being the mass of the ith body,

Fj(t, q, v) = Fj(q) = G
∑
i ̸=j

mimj(qi − qj)

∥qi − qj∥3
(6.1)

For N = 2 one finds Kepler’s ellipses as special solutions, meaning Kepler’s laws
follow from Newtonian gravitation.

The gravitational force is an example of a conservative force field, i.e. a force
F : R3N → R3N that is the negative gradient of a scalar function V : R3N → R,
the so-called potential , F = −∇V .
Exercise 6.1. Check that a Newtonian potential for Eq. (6.1) is given by V (q) =
−G

2

∑
i ̸=j

mjmi

∥qi−qj∥ .

For conservative forces, Newtonian mechanics display "conservation of en-
ergy" . This means the function

E : R3N × R3N → R

E(q, v) =

N∑
j=1

mj

2
∥vj∥2 + V (q)
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is constant along solutions of γ̈ = −M−1∇V (γ), i.e.

E(γ(t), γ̇(t)) = E(γ(t0), γ̇(t0)) ∀t ∈ R (6.2)

Exercise 6.2. Show the above assertion, i.e. if γ̈ = −M−1∇V (γ), then Eq. (6.2)
holds.

In other words, the solutions of the Newtonian evolution stay on level sets of
the function E! If V is translation invariant, i.e.

V (q1 + a, q2 + a, . . . , qN + a) = V (q1, . . . , qN ) ∀a ∈ R3

then also the total momentum:

P (q, v) = P (v) =
N∑
j=1

mjvj ∈ R3

is conserved. If V is invariant under rotations of R3, i.e.

V (Rq1, . . . , RqN ) = V (q1, . . . , qN )

then angular momentum

L(q, v) =
N∑
j=1

mjqj × vj

is conserved. This observation of symmetries leading to the conservation of func-
tions in q and p is more than by accident but follows the so-called conservation
laws. As is the case for any 2nd-order ODE, one can write Newton’s equation as
a first-order ODE on R6N leading to the concept of Hamiltonian mechanics.

6.1.2 Lagrangian mechanics

Another very popular and useful formalism is the Lagrangian formulation of
classical mechanics as a variational problem: A Lagrangian function is a function

L : R3N × R3N → R, (q, v) 7→ L(q, v)

(e.g. L(q, v) =
N∑
j=1

mj

2 ∥vj∥2 − V (q)). Let

Γ = {γ : C2([0, T ],R3N )}

the space of C2-paths in configuration-space on time interval [0, T ]. The action
of such a path is

S(γ) =

T∫
0

L(γ(t), γ̇(t)) dt

S : Γ → R
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Then the principle of least action asserts that the physically possible paths are
those for which S (when adding appropriate constraints) is critical, i.e.

D(S − λ ·H)|γ = 0 Euler-Lagrange equation (6.3)

As

DS|γh = DvL|(γ(T ),γ̇(T )) · h(T )−DvL|(γ(0),γ̇(0)) · h(0)

+

T∫
0

{
DqL|(γ(t),γ̇(t)) −

(
d

dt
DvL(γ(t),γ̇(t))

)}
h(t) dt

a part of Eq. (6.3) is often (when h is only contained at single points)

DqL|(γ(t),γ̇(t)) −
d

dt
DvL|(γ(t),γ̇(t) = 0 ∀t

For L =
∑ mj

2 ∥vj∥2 − V (q) these are exactly Newton’s equations.

6.1.3 Hamiltonian mechanics

Another approach is the one of Hamiltonian mechanics. The phase space of N
particles in R3 is

P = R6N , x ∈ P ,

where
x = (q1, . . . , qN︸ ︷︷ ︸

positions

, p1, . . . , pN︸ ︷︷ ︸
momenta

)

(in general, P is a symplectic space or manifold). The canonical symplectic form
on P = R6N is

J : R6N × R6N → R, (x1, x2) 7→ ⟨x1|Ix2⟩

with

I =

(
0 idR3N

−idR3N 0

)
, IT = −I

The law of motion is the first-order ODE on P where the vector field is the
symplectic gradient of a function. H : P → R, the Hamiltonian:

α̇ = I∇H(α), α : R → P = R6N

With α(t) = (Q(t), P (t)) this reads(
Q̇(t)

Ṗ (t)

)
=

(
0 id

−id 0

)
·
(
∇qH(Q(t), P (t))
∇pH(Q(t), P (t))

)
=

(
∇pH(Q(t), P (t))
−∇qH(Q(t), P (t))

)
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For H(q, p) =
N∑
j=1

1
2mj

∥pj∥2 + V (q) one finds again Newton’s equation.

Let Φ : R× P → P, (t, x) 7→ αx(t) be the flow of a Hamiltonian system. Then
one has

1. conservation of energy: H ◦ Φt = H ∀t ∈ R

2. conservation of phase space volume (Liouville’s theorem):

Φ∗tλ = λ (i.e. λ(Φt(A)) = λ(A) ∀A ∈ B(P ))

with λ the Lebesgue measure, respectively Liouville measure.

6.2 Non-relativistic quantum mechanics

We would hope for a mathematical model for the motion ofN particles (electrons,
nuclei, atoms, ...) in physical space and time. However, quantum mechanics fall
short of this expectation. Strictly speaking, quantum mechanics is a mathe-
matical formalism that allows making empirical predictions about such systems,
which are confirmed by experiments very well. The physical nature of those par-
ticles moving in space and time (also when we do not perform experiments or
"observations" on them) is an ongoing debate for almost 100 years.

6.2.1 Quantum mechanics of N interacting spin-less point par-
ticles

1. The state of the system at time t ∈ R is completely described by the wave-
function

ψ(t, ·) : R3N → C,

where
∥ψ(t, ·)∥2L2(R3N ) =

∫
R3N

|ψ(t, q)|2 d3Nq = 1

is assumed. The physical meaning of ψ(t, ·) is that

ρ(t, q) = |ψ(t, q)|2

is a probability density : The probability that the configuration Q(t) is (or is
found to be when someone measures) in a subset Λ ⊂ R3N of configuration
space is given by

Prob(Q(t) ∈ Λ) = Pψt(Λ) =

∫
Λ

|ψ(t, q)|2 d3Nq.
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Thus, the wave-function ψt(·) = ψ(t, ·) defines a probability measure Pψt

on configuration space. It should be noted that the wave function does
not provide a mass- or charge density. Quantum mechanics is about point
particles, not about smeared-out "stuff"!

2. The dynamical law specifying the time-evolution of the state ψ(t, ·) is the
Schrödinger equation

iℏ∂tψ(t, q) = −ℏ2
N∑
j=1

1

2mj
∆qjψ(t, q) + V (q)ψ(t, q)

= (Hψ)(t, q)

where the linear operator (to be defined on suitable function spaces)

H = −ℏ2
N∑
j=1

1

2mj
∆qj + V (q)

is called the Hamiltonian. The Schrödinger equation is a linear partial
differential equation (PDE) for a function on configuration space R3N .

Definition 6.3 (Definition). Square integrable solutions of the time-independent
Schrödinger equation

(HψE)(q) = EψE(q) for some E ∈ R

are called eigenstates of H (or energy eigenstates), and

ψ(t, q) = e−itEψE(q)

is a stationary solution of the time-dependent Schrödinger equation.
Typically, only for a discrete set {Ej} ⊂ R solutions of the time-independent
Schrödinger equation in L2 exist.

Example 6.4. 1. Free particle in a box:

− d2

dx2
ψ(x) = Eψ(x) ψ ∈ L2([0, 1])

with Dirichlet boundary conditions ψ(0) = ψ(1) = 0.

⇒ ψn(x) =
√
2 sin(n · π · x) n ∈ N

with the "energy eigenstates" En = n2 · π2.

2. Hydrogen atom:

H = − 1

2me
∆q −

c

|q|
on L2(R3)
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with the energy eigenstates of En = − c̃
n2 for n ∈ N. The differences En−Em

correspond to energies of spectral lines of hydrogen atoms, i.e. to photons
absorbed or emitted by hydrogen. The corresponding eigenfunctions are
called orbitals.

3. Harmonic oscillator:

H = − h2

2m

d2

dx2
+
m

2
ω2x2

For the time-independent Schrödinger equation

Hψn = Enψn one gets En = ℏω
(
n+

1

2

)
n ∈ N0

and

ψn(x) =
1√
2nn!

(mω
πℏ

)1/4
Hn

(√
mω

ℏ
x

)
e−

mωx2

2ℏ

with Hn(·) being the Hermite polynomials.

6.2.2 "Axiomatic" formulation of the quantum measurement for-
malism

1. State space: The possible states of a quantum system are described by
normalised vectors ψ ∈ H in a Hilbert space H.

2. Observables and operators: Every physical observable A corresponds to a
self-adjoint operator Â on H.

3. Measurement process:

(a) Possible outcomes: The measurement of an observable A yields as an
outcome one of the eigenvalues of the corresponding operator Â.

(b) Probabilities: Let A be an observable and ai an eigenvalue of the
associated operator Â and Pai the spectral projection on the corre-
sponding eigenspace. The probability for obtaining the result ai when
measuring the observable A on a system in the state ψ is

Prob(A = ai |ψ) = ∥Paiψ∥2.

(c) State after the measurement: If the measurement of the observable A
on a quantum system in the state ψ yields the outcome ai, then after
the measurement the state of the system is

ψcoll. =
Paiψ

∥Paiψ∥

"collapse of the wave function".
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4. Dynamic law: In between measurements the state ψ of the system evolves
according to the Schrödinger equation:

iℏ
d

dt
ψ(t) = Ĥψ(t),

where Ĥ is the Hamilton operator (the operator corresponding to the "en-
ergy observable")

5. Correspondence principle: Let A : R6N → R, (q, p) 7→ A(q, p) be a classi-
cal observable. Then the corresponding operator Â is the given

Â = A(q,−iℏ∇q)

acting on L2(R3N ) = H.

Example 6.5 (Examples of the applied correspondence principle).

1. Ĥ = H(q,−iℏ∇q) = −ℏ2
N∑
j=1

1
2mj

∆qj + V (q)

2. p̂j = −iℏ∇qj the momentum operator

3. q̂j = qj the position operator

4. [q̂j , p̂i] = iℏδij ↔ iℏ{qj , pj}, i.e. the Poisson bracket of classical mechanics
is replaced by the commutator.

Remark 6.6 (Dirac notation). It has turned out to be quite advantageous in the
context of quantum mechanics to use the notation of Paul Dirac (1902 - 1984).

1. Vectors ψ ∈ H are written as |ψ⟩ ("ket")

2. The linear functional Jψ : H → C, φ 7→ Jψ(ϕ) = ⟨ψ|φ⟩H is written as ⟨ψ|
("bra")

3. The inner product of ψ,φ ∈ H then becomes:

⟨φ|ψ⟩ = ⟨φ|ψ⟩H

4. while "ket bra" is a rank one operator:

|ψ⟩⟨φ| : H → H, χ 7→ |ψ⟩⟨φ|χ = ⟨φ|χ⟩H ψ .

5. A bounded linear operator Â ∈ L(H) can be written in terms of an ONB
(ψj) as

Â =

∞∑
j,i=1

|ψj⟩
〈
ψj

∣∣∣Âψi〉 ⟨ψi| =
∑
ij

〈
ψj

∣∣∣Âψi〉 |ψj⟩⟨ψi| .
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Definition 6.7 (Spin). Particles with "spin" are described by Cn-valued wave
functions:

1. The wave function for one particle with spin m
2 (m ∈ N0)

ψ : R3N → Cm+1

(e.g. for electrons m = 1, but for nuclei m = 0 or m > 1 are possibilities).

2. wave function for N particles with spin m
2

ψ : R3N → C(m+1)N

(e.g. 6 electrons of a carbon atom: ψ : R18 → C64).

3. The Pauli Hamiltonian for N = 1, m = 1 is given by

Hψ =
1

2m
(−i∇q + eA(q))2 ψ − c ⟨σ|B(q)⟩R3︸ ︷︷ ︸

∈L(C2)

ψ ,

with σ being Pauli matrices, A(q) the vector potential and B(q) the mag-
netic field (B = curlA).

Definition 6.8 (Bosonic and fermionic wave functions). Let us consider N iden-
tical particles, i.e. q = (q1, . . . , qN ). We then distinguish two cases.

1. m even → bosons → ψ : R3N → C(m+1)N symmetric under permutation of
arguments,

ψ(qπ(1), . . . , qπ(n)) = Uπψ(q1, . . . , qN ) ∀π ∈ SN

2. m odd → fermions → ψ : R3N → C(m+1)N anti-symmetric under permuta-
tion of arguments

ψ(qπ(1), . . . , qπ(N)) = sgn(π)Uπψ(q1, . . . , qN ) ∀π ∈ SN



Chapter 7

Math of (finite dimensional)
quantum system

We have discussed in the previous chapter that a quantum system is described
using a normalised vector in a Hilbert space. Further, we have seen that using
the correspondence principle we can turn a classical observable into a quantum
one, by just replacing q 7→ q̂ and p 7→ −iℏ∇q in the function that is an observ-
able. Up to this point, it is, however, completely unclear what we mean by the
function of operators on a Hilbert space, including also differential operators. All
inconsistencies and hand-wavy arguments given so far can be moulded into a solid
mathematical framework which you will come to know under the name functional
calculus. In this chapter, we will develop the simplest version of a functional cal-
culus namely it being defined on a finite-dimensional Hilbert space. Note that in
this section, although we try to be as abstract and general as possible, we will
always assume that H is finite-dimensional.

Definition 7.1 (Inner product space). Let H be a complex vector space. We
define the following

1. A sesqui-linear form on H is a map

B : H×H → C

that is

(a) linear in the second argument, i.e. ∀ψ, ϕ, χ ∈ H, λ ∈ C:

B(ψ, λϕ+ χ) = λB(ψ, ϕ) +B(ψ, χ) ,

(b) and conjugated symmetric, i.e. satisfies B(ψ, ϕ) = B(ϕ, ψ) for all
ψ, ϕ ∈ H.

2. A sesqui-linear form
⟨·|·⟩ : H → H → C

45



7. Math of (finite dimensional) quantum system 46

that is positive definite, i.e. ⟨ψ|ψ⟩ > 0 for ψ ∈ H\{0}, is called inner
product or scalar product . The pair (H, ⟨·|·⟩) is called inner product space
or pre-Hilbert space. We say that two vectors ϕ, ψ ∈ H are orthogonal, if
and only if ⟨ψ|ϕ⟩ = 0.

Theorem 7.2 (Norm induced by the inner product). Let (H, ⟨·|·⟩) be an inner
product space. The map

∥·∥ : H → [0,∞), ψ 7→ ∥ψ∥ :=
√
⟨ψ|ψ⟩

is a norm on H.

Definition 7.3 (Hilbert space). We call an inner product space (H, ∥·∥) a Hilbert
space if it is complete with respect to the norm induced by the inner product.

Remark 7.4. Remember that finite dimensional normed spaces are complete.
Thereby every finite-dimensional inner product space is a Hilbert space.

Definition 7.5 (Dual of a Hilbert space). Let (H, ⟨·|·⟩) a Hilbert space. We call
the space L(H,C) (i.e. the set of bounded linear maps from H → C) the space
of linear functionals on H or dual space of H and denote it by H′.

Theorem 7.6 (Riesz representation theorem). Let H be a Hilbert space. The
map

J : H → H′, ψ 7→ J(ψ) with J(ψ)(φ) := ⟨ψ|φ⟩H ,

is an anti-linear isometric isomorphism.

Definition 7.7 (Adjoint operator). Let A ∈ B(H), then the adjoint A∗ ∈ B(H)
of A is implicitly defined by

⟨ψ|Aφ⟩ = ⟨A∗ψ|φ⟩ ∀ψ,φ ∈ H .

We call A ∈ B(H) self adjoint , if A∗ = A.

Remark 7.8. In the above definition, we have swiped many things under the
rock. Indeed it is neither clear that the adjoint operator is well-defined, linear
and bounded and one needs to prove those assertions. To prove those we can
immediately apply the Riesz-representation theorem.

Proof of Definition 7.7. For better understanding, we indicate in the subindex of
the norm, the space they act on.

1. Well defined: For ψ ∈ H the map φ 7→ ⟨ψ|Aφ⟩ is a bounded linear func-
tional, since using Cauchy-Schwarz

⟨ψ|Aφ⟩ ≤ ∥ψ∥H∥Aφ∥H ≤ ∥ψ∥H∥A∥B(H)︸ ︷︷ ︸
=C

∥φ∥H . (7.1)

This means, however, that there exists a unique ψ̃ = J−1(⟨ψ|A·⟩) and we
can just define A∗ψ := ψ̃.
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2. Linear: Using the representation from above, for ψ1, ψ2 ∈ H, α ∈ C, we
find that

A∗(ψ1 + αψ2) = J−1(⟨ψ1 + αψ2|A·⟩) = J−1(⟨ψ1|A·⟩+ α ⟨ψ2|A·⟩)
= J−1(⟨ψ1|A·⟩) + αJ−1(⟨ψ2|A·⟩)
= A∗ψ1 + αA∗ψ2

where we used the anti-linearity of the inner product and the anti-linearity
of J−1.

3. Bounded: Since J is an isometric isomorphism, i.e. preserves the norm.
For ψ ∈ H

∥A∗ψ∥H =
∥∥J−1(⟨ψ|A·⟩)∥∥H = ∥⟨ψ|A·⟩∥H′ ≤ ∥A∥B(H)∥ψ∥H .

To conclude the last inequality, we just used Eq. (7.1).

Definition 7.9 (Projection). A bounded linear operator P ∈ B(H) on a Hilbert
space H, satisfying

P 2 = P

is called a projection. If P in addition is self adjoint, i.e. P ∗ = P then P is called
an orthogonal projection.

Theorem 7.10. Every finite-dimensional Hilbert space of dimension n is iso-
metrically isomorphic to Cn. By fixing a basis, we also can identify the linear
maps on H with matrices from Cn×n.

Theorem 7.11 (Spectral theorem in finite dimensions). Let H be a finite Hilbert
space of dimension n, and A ∈ B(H) a linear, self-adjoint operator. Then there
exist real eigenvalues a1, . . . , ak of A and corresponding eigenspaces E(a1), . . . , E(ak)
as well as orthogonal projections P (a1), . . . , P (ak) onto those subspaces with k ≤
n satisfying the following properties:

1. It holds that H =
k⊕
i=1

E(ai).

2. The projections are mutually orthogonal P (ai)P (aj) = P (aj)P (ai) = δijP (ai)
for i, j = 1, . . . , k,

3. and sum to one
k∑
i=1

P (ai) = 1.

4. The linear operator can be written as A =
k∑
i=1

aiP (ai).
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Remark 7.12. In other words: For every self-adjoint operator on a finite-dimensional
Hilbert space, there exists an orthonormal basis of eigenvectors.

We now come to the part where we sketch a mathematical framework which
allows us to insert self-adjoint operators into functions. In this context, some
natural requirements appear, that directly relate structures in the function space
with structures in the operator space. Those requirements are the defining prop-
erties of a functional calculus.

Definition 7.13 (Definition of a functional calculus). Let (H, ⟨·|·⟩) a seperable1

Hilbert space. Let A ∈ B(H) self adjoint. A mapping that maps each element
f : R → C from a sub-algebra E of

B(R) := {f : R → C : f is Borel measurable and bounded, i.e. sup
x∈R

|f(x)| <∞} .

to an operator f(H) ∈ B(H), i.e.

πA : E → B(H), f 7→ πA(f) = f(A) ,

is called a functional calculus if it satisfies the following properties:

1. πA is an algebra-homomorphism, i.e.

πA(f + αg) = (f + αg)(A) = f(A) + αg(A) = πA(f) + απA(g)

and
πA(f · g) = (f · g)(A) = f(A)g(A)

for all f, g ∈ E , α ∈ C.

2. πA(f) = f(A) = f(A)∗ = πA(f)
∗ for all f ∈ E .

3. ∥πA(f)∥ ≤ ∥f∥∞ for all f ∈ E .

4. For z ∈ C \R and rz(x) := (x− z)−1 we recover the resolvent, i.e. rz(A) =
(A− z)−1.

5. f ∈ C∞0 (R) satisfies supp f∩σ(A) = ∅, i.e. the map is zero on the spectrum
of A, then f(A) = 0.

Theorem 7.14 (An "almost" functional calculus for polynomials). Let H be a
finite Hilbert space of dimension n, and A ∈ B(H) a linear, self-adjoint operator.
Let further p ∈ C[x] a polynomial, i.e.

p(x) =

d∑
j=1

cjx
j cj ∈ C .

1Seperable means that the Hilbert space admits for a dense countable subset, i.e. a set D
which has countably many elements and D = H.



7. Math of (finite dimensional) quantum system 49

Then

p(A) =
d∑
j=1

cjA
j =

k∑
i=1

p(ai)P (ai) .

defines "almost" a functional calculus on the polynomials C[x] (without the ful-
filment of Item 4 as x 7→ (x− λ)−1 is not a polynomial).

Theorem 7.15 (Cauchy’s integral formula). Let f : D → C analytic with D ⊂ C
a simply connected domain2. For γ : [0, 1] → D a closed curve (continuous) with
no self-intersections, then

f(z) =
1

2πi

∮
γ

f(ω)
1

ω − z
dω ∀z in the interior of γ ,

where γ is oriented counterclockwise.

Cauchy’s integral formula can now be used to define a proper functional cal-
culus using the resolvent of a self-adjoint bounded operator as a building block.

Theorem 7.16 (Functional calculus for analytic functions). Let H be a finite-
dimensional Hilbert space of dimension n, and A ∈ B(H) a linear, self-adjoint
operator. Let further f : D 7→ C a holomorphic function on the simply connected
domain D which contains the spectrum σ(A) of A. Then

f(A) =
1

2πi

∮
γ

f(ω)
1

ω −A
dω

for any non self-intersecting path going anti-clockwise in D\σ(A) and containing
σ(A), defines a functional calculus. Here 1

ω−A is the resolvent of A. We can
further simplify

f(A) =

k∑
i=1

( 1

2πi

∮
γ

f(ω)
1

ω − ai
dω

)
P (ai) =

k∑
i=1

f(ai)P (ai) .

Remark 7.17. The path in the above theorem does not matter and neither does
the shape of D. We just need that σ(A) ⊂ D and that the path "encircles"
the spectrum whilst not hitting any eigenvalues. Note further that the above
definition of a functional calculus agrees on polynomials with Theorem 7.14.
Note that under a further assumption on the functional calculus, one can show
that it is indeed unique.

2The set D is open and further every continuous closed path can be shrunk to a point
continuously.
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